
10-715 Advanced Introduction to Machine Learning: Homework 4
Neural Networks

Released: Wednesday, October 17, 2018
Due: 11:59 p.m. Wednesday, October 31, 2018
Last Updated: 24th October, 2018: 6:00 PM

Instructions

• Late homework policy: Homework is worth full credit if submitted before the due date, half credit during the
next 48 hours, and zero credit after that.

• Collaboration policy: Collaboration on solving the homework is allowed. Discussions are encouraged but
you should think about the problems on your own. When you do collaborate, you should list your collaborators!
Also cite your resources, in case you got some inspiration from other resources (books, websites, papers). If you
do collaborate with someone or use a book or website, you are expected to write up your solution independently.
That is, close the book and all of your notes before starting to write up your solution. We will be assuming that,
as participants in a graduate course, you will be taking the responsibility to make sure you personally understand
the solution to any work arising from such collaboration.

• Online submission: You must submit your solutions online on Autolab (link: https://autolab.andrew.
cmu.edu/courses/10715-f18/assessments). Please use LATEX to typeset your solutions, and submit
a single pdf called hw4.pdf.

• This homework involves a significant amount of coding, and requires a number of experiments to be run. Start
Early!
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1 Convolutional Neural Networks (CNN) [100 points]

Autograding environment We use Python 2.7.5 for autograding. To make sure that your program outputs the correct
shapes and your saved weights.npy can be loaded on the server, please use the following command to install the
numpy and scipy:

pip install ’numpy==1.7.1’

pip install ’scipy==0.12.1’

CNN We will begin by introducing the basic structure and building blocks of CNNs. Like ordinary neural network
models, CNNs are made up of layers that have learnable parameters including weights and bias. Each layer takes the
output from previous layer, performs some operations and produces an output. The final layer is typically a softmax
function which outputs the probability of an image being in different classes. We optimize a objective function over
the parameters of every layer and then use stochastic gradient descent (SGD) to update the parameters to train a model.

Depending on the operation in the layers, we can divide the layers into the following types:

1.1 Dense layer (fully connected layer)

As the name suggests, every output neuron of the inner product layer has full connection to the input neurons. See
here for a detailed explanation. The output is the multiplication of the input with a weight matrix plus a bias offset,
i.e.:

f(x) =Wx+ b. (1)

This is simply a linear transformation of the input. The weight parameter W and bias parameter b are learnable in this
layer. The input x is a d dimensional vector, and W is an n× d matrix and b is n dimensional vector.

1.2 ReLU layer

We add nonlinear functions after the inner product layers to model the nonlinearity of real data. One of the activation
functions found to work well in image classification is the rectified linear unit (ReLU):

f(x) = max(0, x). (2)

There are many other activation functions such as the sigmoid and tanh function. See here for a detailed comparison
among them. There is no learnable parameter in the ReLU layer.

The ReLU layer is sometimes combined with inner product layer as a single layer; here we separate them in order to
make the code modular.

1.3 Convolution layer

See here for a detailed explanation of the convolution layer.

The convolution layer is the core building block of CNNs. Different from the inner product layer, each output neuron
of a convolution layer is only connected to some input neurons. As the name suggests, in the convolution layer, we
apply a convolution operation with filters on input feature maps (or images). Recall that in image processing, there are
many types of kernels (filters) that can be used to blur, sharpen an image or to detect edges in an image. See the wiki
page if you are not familiar with the convolution operation. In a convolution layer, the filter (or kernel) parameters are
learnable and we want to adapt the filters to data. There is also more than one filter at each convolution layer. The
input is a three dimensional tensor, rather than a vector as in the inner product layer. We represent the input feature
maps (it can be the output from a previous layer, or an image from the original data) as a three dimensional tensor with
height h, width w and channel c (for a color image, it has three channels).
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Fig. 1 shows the detailed convolution operation. The input is a feature map, i.e., a three dimensional tensor with size
h× w × c. Assume the (square) window size is k, then each filter is of shape k × k × c since we use the filter across
all input channels. We use n filters in a convolution layer, then the dimension of the filter parameter is k × k × c× n.
Another two hyper-parameters in the convolution operation, are the padding size p and stride step s. Zero padding is
typically used; after padding, the first two dimensions of input feature maps are (h + 2p) × (w + 2p). The stride s
controls the step size of the convolution operation. As Fig. 1 shows, the red square on the left is a filter applied locally
on the input feature map. We multiply the filter weights (of size k × k × c) with a local region of the input filter map
and then sum the product to get the output feature map. Hence, the first two dimensions of the output feature map are
[(h+2p− k)/s+1]× [(w+2p− k)/s+1]. Since we have n filters in a convolution layer, the output feature map is
of size [(h+ 2p− k)/s+ 1]× [(w + 2p− k)/s+ 1]× n.

Besides the filter weight parameters, we also have the filter bias parameters which is a vector of size n, that is, we add
one scalar to each channel of the output feature map.

1.4 Pooling layer

It is common to use pooling layers after convolutional layers to reduce the spatial size of feature maps. Pooling layers
are also called down-sample layers. With a pooling layer, we can extract more salient feature maps and reduce the
number of parameters of CNNs to reduce over-fitting. Like a convolution layer, the pooling operation also acts locally
on the feature maps, and there are also several hyper parameters that controls the pooling operation including the
windows size k and stride s. The pooling operation is typically applied independently within each channel of the input
feature map. There are two types of pooling operations: max pooling and average pooling. For max pooling, for each
window of size k × k on the input feature map, we take the max value of the window. For average pooling, we take
the average of the window. We can also use zero padding on the input feature maps. If the padding size is p, the first
two dimension of output feature map are [(h + 2p − k)/s + 1] × [(w + 2p − k)/s + 1]. This is the same as in the
convolutional layer. Since pooling operation is channel-wise independent, the output feature map channel size is the
same as the input feature map channel size.

s

k

h

w

p (w+2*p-k) / s

(h+2*p-k) / s

input feature map
output feature map

Figure 1: convolution layer

Refer to here for a more detailed explanation of the pooling layer. For simplicity, you do not need to implement
padding in this homework. In other words, you can assume that p = 0.

1.5 Loss layer

For classification, we use a softmax function to assign probability to each class given the input feature map:

p = softmax(Wx+ b). (3)
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In training, we know the label given the input image, hence, we want to minimize the negative log probability of the
given label:

l = − log(pj), (4)

where j is the label of the input. This is the objective function we would like to optimize.

2 LeNet

Having introduced the building components of CNNs, we now introduce the architecture of LeNet.

Layer Type Configuration
DATA input size: 28× 28× 1
CONV k = 5, s = 1, p = 0, n = 20
POOLING MAX, k = 2, s = 2, p = 0
CONV k = 5, s = 1, p = 0, n = 50
POOLING MAX, k = 2, s = 2, p = 0
Dense n = 500
RELU
Dense n = 10
LOSS

Table 1: Architecture of LeNet

The architecture of LeNet is shown in Table. 1. The name of the layer type explains itself. LeNet is composed of
interleaving of convolution layers and pooling layers, followed by an inner product layer and finally a loss layer. This
is the typical structure of CNNs.

Refer to here for the architecture of other CNNs.

3 Implementation

The basic framework of CNN is already finished and you need to help fill some of the empty functions. Here is an
overview of all the files provided to you.

• commons.py: Defines the Variable class which stores the parameters’ gradients and values.

• conv layer.py: Defines the ConvLayer class for implemented convolutional layers.

• data layer.py: Takes the input data and returns the data with the correct format. You should first run
python data loader.py to convert the data file to the desired format.

• data loader.py: Provides helpful functions to load the data.

• dense layer.py: Defines the DenseLayer and ReLULayer that you need to implement.

• layers.py: Imports all the defined layers.

• le net.py: At the bottom of le net.py, we define the structure of LeNet. It consists of the 8 layers,
the configuration of layer i is specified in structure layers[i]. The order of layers and the configuration
parameters for each layer are shown in Table 1. The class LeNet defines the LeNet. It takes the configuration
of the network structure, the input data (data) and label (labels) and does feed forward and backward
propagation, returns the cost and gradient w.r.t all the parameters (grad).

• loss layer.py: Defines the cross entropy loss function.

• main.py is the main file for you to specify a network structure and train a model.
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• optimizer.py: Defines the SGD and SGD with momentum.

• pool layer.py: Defines the max pooling layer.

Note that the parameters of each layer is stored as params. params["w"] is the weight matrix and params["b"]
is the bias (Note that both these are Variable objects) . The init function will figure out the shapes of all
parameters and give them an initial value according to the layer configuration. We use uniform random variables
within given ranges to initialize the parameters. For all layers, the forward function does the feed forward (i.e given
the outputs of the layer below, computes the values of the current layers). The backward function does the backward
propagation (ie given derivatives of the cost wrt the outputs, computes the derivatives wrt the layer paramters, if they
exist, as well as the derivatives wrt the inputs).

Also provided are two helper functions in the BaseConvLayer class.

• im2col conv returns a list of pixels in each feature window, given an input image and layer details (such
as padding, stride, and output dimensions). Given an image with multiple channels, im2col conv function
moves a feature window over the input image and places all pixels within the feature window in a separate
column in the col variable of dimension [k x k x c, h out x w out]. You might need to reshape your
input to this function and also reshape its output, so please read the function to get a better understanding of
how the values are stored.

• col2im conv returns a list of the gradients at each pixel of the input image, given a list of gradients for each
pixel in each feature window. Given a data structure col, the function col2im conv takes each column of col
and adds it at the appropriate feature window of image im which is to be returned by the function. In this sense,
col2im conv is the reciprocal of the function im2col conv described earlier. You might need to reshape
your input to this function and also reshape its output, so please read the function to get a better understanding
of how the values are stored.

The following two figures provide a graphical description of the im2col conv and col2im conv. In Figure 2, the
feature window moves over the input image in a row major fashion (red 7→ green 7→ brown 7→ . . . ). The content of the
feature window will be reshaped to a column and put into a matrix M with k x k x c rows and h out x w out
columns in the same order as they are retrieved from the image.

Figure 2: im2col conv: s = 1, k = 2, c = 1, h out = w out = 5
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In Figure 3, an empty image is first initialized. Then the input column is reshaped to a matrix M with k x k x c
rows and h out x w out columns. Each column in the matrix is first reshaped to a feature window of k x k x
c, and added to the image in the row major order.
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Figure 3: col2im conv: s = 1, k = 2, c = 1, h out = w out = 5

3.1 Data structure

We use the following python classes and OrderedDicts to store most of our input and output values. You could
refer to a particular field of the structure using structure.field for classes, and (DictName[”key”]) from an
OrderedDict. Here is a list of structures you’ll encounter

• inputs, outputs: data and shape of the feature maps

– outputs["height"] and inputs["height"] store the height of feature maps

– outputs["width"] and inputs["width"] and store the width of feature maps

– outputs["channel"] and inputs["channel"] store the channel size of feature maps. Channel
is the number of RGB channels for the input layer, generally the depth dimension for other layers.

– batch size in main.py stores the batch size of feature maps. At every iteration, we take a random
mini batch of the training data and call LeNet to get the gradient of the parameters, the batch size is
the size of the mini batch we used.

– outputs["data"], inputs["data"] stores actual data of a feature map. It is a matrix with size
[batch size, height x width x channel]. If necessary, you can reshape it to [batch size,
height, width, channel] during your computation, but remember to reshape it back to a two di-
mensional matrix at the end of each function.

• output grads: gradient of the feature maps

– output grads["grad"] stores the gradient w.r.t the data matrix. This is used in backward propaga-
tion. It has the same shape as outputs["data"].

• param: model parameters including the weights, biases, and their gradient
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– param["w"].value and param["w"].grad stores the weight matrix of each layer and its gradient.

– param["b"].value and param["b"].grad stores the bias of each layer and its gradient.

3.2 Feed Forward

Convolution layer: conv layer.py has been implemented for you.

1. [10 points] Pooling layer: You need to implement the forward function in the pooling layer (pool layer.py).
You can assume the padding is 0 here. As explained before, there are two type of poolings, max pooling and
average pooling. We only test max pooling in this homework. Hence, in the code, the act type can only take
value max.

2. [5 points] ReLU layer: You need to implement the forward function in the ReLU layer (dense layer.py).
The function interfaces are clearly explained in the code.

3. [10 points] Dense layer: You need to implement the forward function in the Dense layer (dense layer.py).

3.3 Backward Propagation

Denote layer i as a function fi with parameters wi, then the final loss is computed as:

l = fI(wI , fI−1(wI−1, ...)). (5)

We want to optimize l over the parameters of each layer. We can use the chain rule to get the gradient of the loss w.r.t
the parameters of each layer. Let the output of each layer be hi = fi(wi, hi−1). Then the gradient w.r.t wi is given by:

∂l

∂wi
=
∂l

∂hi

∂hi
∂wi

, (6)

∂l

∂hi−1
=
∂l

∂hi

∂hi
∂hi−1

. (7)

That is, in the backward propagation, you are given the gradient ∂l
∂hi

w.r.t the output hi and you need to compute the
gradient ∂l

∂wi
w.r.t the parameter wi in this layer (ReLU layers and pooling layer do not have parameters, so you can

skip this step), and the gradient ∂l
∂hi−1

w.r.t the input (which will be passed to the lower layer).

Note that you will need to store the data in the latest call of the forward function in order to perform back propagation.
For example, in the conv layer.py, we store the data of the forward pass to self.data and use it for back
propagation.

Convolution layer: conv layer.py has been implemented for you.

1. [10 points] Pooling layer: You need to implement the backward function in the pooling layer (pool layer.py).
You can assume the padding is 0 here. As explained before, there are two type of poolings, max pooling and
average pooling. We only test max pooling in this homework. Hence, in the code, the act type can only take
value max.

2. [5 points] ReLU layer: You need to implement the backward function in the ReLU layer (dense layer.py).
The function interfaces are clearly explained in the code.

3. [10 points] Dense layer: You need to implement the backward function in the Dense layer (dense layer.py).
While computing the gradient of parameters in the backward pass for all layers, compute the average gradient
(i.e divide by batch size).

Refer to here for more introduction on backward propagation.
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3.4 Training and SGD

Having completed all the forward and backward functions, we can compose them to train a model. main.py and
le net.py are the main files for you to specify a network structure and train a model.

3.4.1 Network Structure

The function modules are written so that you can change the structure of the network without changing the code. At
the bottom of le net.py, we define the structure of LeNet. It is consisted of the 8 layers, the configuration of layer
i is specified in layers[i]. Each layer has a parameter called layers[i]["type"], which define the type of
layer. The configuration of each layer is clearly explained in the comment.

3.5 SGD

After the network structure is defined and parameters are initialized, we can start to train the model. We use stochastic
gradient descent (SGD) to train the model. At every iteration, we take a random mini batch of the training data
and call LeNet to get the gradient of the parameters, and we then update the parameter based on the gradients
(param["w"].grad and param["b"].grad).

Vanilla SGD The stochastic gradient updates the parameters as follows:

w = w − α ∂l
∂w

, (8)

Momentum To make your model converges faster, you can use SGD with momentum:

θ = µθ + α
∂l

∂w
, (9)

w = w − θ, (10)

where θ maintains the history accumulative gradient, the momentum µ determines how the gradients from previous
steps contribute to current update and α is the learning rate at the current step.

Refer to here for a detailed explanation of momentum.

The learning rate α is a sensitive parameter in neural network models. We need to decrease the learning rate as we
iterate over the batches. Here we choose the following schedule policy to decrease the learning rate:

αt =
ε

(1 + γt)p
, (11)

where ε is the initial learning rate, t is the iteration number, and γ and p controls how the learning rate decreases.

We typically need to impose some regularization on the network parameters to avoid over-fitting, and one commonly
used strategy is called weight decay. This is equivalent to L2 norm regularization. With weight decay, the total loss
becomes:

lreg = l +
λ

2

∑
i

w2
i (12)

and the gradient w.r.t wi becomes:
∂lreg
∂wi

=
∂l

∂wi
+ λwi (13)

After finishing all the above components, you can run main.py. You should be able to get an accuracy greater than
0.95 after the first epoch.
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We can see the training cost is decreasing. After the training is finished, the test accuracy you should get is about
99.1%. Check here for the state of the art result on MNIST classification accuracy.

It takes about 11 minutes to train for 1 epoch on our laptops. The actual training time depends on the computer you
use and your implementation.

1. [20 pt] End-to-end training: In the file optimizer.py, you need to implement the function update lr
in SGDMomentum to get the learning rate αt at iteration itr (t). The correspondence between input to
the function and the math symbol here is: itr is t, epsilon is ε, gamma is γ, power is p. In the same
optimizer.py file, you also need to implement the step function in SGDMomentum to perform sgd with
momentum.

After finishing training, you can save your models’ weights to weights.npy using the save model function
in le net.py. We will evaluate if your model’s accuracy on the test set is greater than 0.98.

4 Feature Visualization

After you finish training, you can take the model and visualize the internal features of the LeNet. Suppose we want to
visualize the output of the first four layers of the first data point of the test set. You can use matplotlib to show an
image.

The output of first layer is simply the image itself (because the first layer is data layer).

1. [3 pt] The output of the second layer is the output of the first convolution layer, the output feature map is of size
24 × 24 × 20. They are actually 20 images of size 24 × 24. Show the 20 images on a single figure file (use
subplot and organize them in 4× 5 format).

2. [3 pt] The output of the third layer is the output of the max pooling operation on the previous output of convo-
lution layer. The output feature map is of size 12× 12× 20. They are actually 20 images of size 12× 12. Show
the 20 images on a single figure file (use subplot and organize them in 4× 5 format).

3. [4 pt] Compare the output of the second layer and the original image (output of the first layer), what changes do
you find? Compare the output of the third layer and the output of the second layer, what changes do you find?
Explain your observation.

Put the answer of this part in your report.

5 Training Experiments

In the previous sections, we gave you main.py to run and set the values of all of the parameters for you. For
this section, you should write your own scripts to train and test. These will not be auto-graded, so you may call them
whatever you like. We recommend that you copy main.py since much of the code from it will be the same. Warning:
change the name that you save the network to as you will need the original LeNet you trained in a later question.

5.1 Cross-Validation

[10 pt] In the previous sections, the values of all of the training parameters ε, the initial learning rate, p the power of
the learning rate decay, γ, the parameter of the learning rate decrease, as well as µ, the momentum value were all set
for you in main.py.

Instead, we want you to determine some of these values for yourself. Run k-fold cross-validation with k = 5 to find
the optimal value of the parameter ε. Try 0.001, 0.005, 0.01 and 0.05. Set the number of iterations (not the number of
epochs) to be 1000 so that you can train this in a reasonable amount of time.
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Show the k-fold validation values for each of these parameter and then train on the full dataset for the best choice and
report the final test number.

5.2 Pretraining

[10 pt] Here we will introduce you to the idea of “pre-training” by having you run a simple experiment.

First, train a model on the original MNIST dataset (you should already have one that you trained from section 3 that
was automatically saved by LeNet.py). Next, we want to “fine-tune” this model on a different dataset. Load the
previously trained model and then train that network again on a new dataset: rotated MNIST. We have included the
script to loads this data for you in data loader.py. Specifically, you should be able to take

• mnist all rotation normalized float test.amat

• mnist all rotation normalized float train valid.amat

from the website. Run save rotated to dump npy arrays and then use load rotated to load matrices. You
can make use of the load model and save model methods in the LeNet class. Also train another network “from
scratch” that trains on this dataset from the random initialization rather than training on MNIST first.

Report the train and test accuracy you get from your pre-trained network and the network trained from scratch. Explain
why you get the results you get.

6 Submission Instructions

Please put your dense layer.py and pool layer.py and the weight file weights.npy in a folder called
cnn and run the following command:

$ tar cvf cnn.tar cnn

Then submit your tarfile. Note that the autograding will take several minutes to complete. Hence we recommend you
to debug your code offline before submitting it.
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