
10-715 Advanced Introduction to Machine Learning: Homework 5
Semi-Supervised Learning, Clustering, Active Learning

Released: Thursday, November 8, 2018
Due: 11:59 p.m. Wednesday, November 21, 2018

Instructions

• Late homework policy: Homework is worth full credit if submitted before the due date, half credit during the
next 48 hours, and zero credit after that.

• Collaboration policy: Collaboration on solving the homework is allowed. Discussions are encouraged but
you should think about the problems on your own. When you do collaborate, you should list your collaborators!
Also cite your resources, in case you got some inspiration from other resources (books, websites, papers). If you
do collaborate with someone or use a book or website, you are expected to write up your solution independently.
That is, close the book and all of your notes before starting to write up your solution. We will be assuming that,
as participants in a graduate course, you will be taking the responsibility to make sure you personally understand
the solution to any work arising from such collaboration.

• Online submission: You must submit your solutions online on Autolab (link: https://autolab.andrew.
cmu.edu/courses/10715-f18/assessments). Please use LATEX to typeset your solutions, and submit
a single pdf called hw5.pdf.

• This homework involves a significant amount of coding, and requires a number of experiments to be run. Start
Early!
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1 Semi-Supervised Learning [50 points + 50 points EXTRA CREDIT]

1.1 Basic Framework [50 points]

This problem will investigate a famous semi-supervised learning algorithm [1], which is based on the assumption that
similar datapoints should have similar labels. You are encouraged to read through the paper for the motivation and
further details.

We suppose there are labeled points (x1, y1), ..., (xl, yl), and u unlabeled points xl+1, ..., xl+u; typically l << u. Let
n = l + u be the total number of data points. To begin, we assume the labels are binary: y ∈ {0, 1}. Consider a
connected graph G = (V,E) with nodes V corresponding to the data points, with nodes L = {1, ..., l} corresponding
to the labeled points with labels y1, ..., yl, and nodes U = {l + 1, ..., l + u} corresponding to the unlabeled points.
Our task is to assign labels to nodes U . We assume an n× n symmetric weight matrix W on the edges of the graph is
given. For example, when x ∈ Rm, the weight matrix can be

wij = exp

(
−

m∑
d=1

(xid − xjd)2

σ2
d

)
(1)

where xid is the d-th component of instance xi represented as a vector xi ∈ Rm, and σ1, ...σm are length scale
hyperparameters for each dimension. Thus, nearby points in Euclidean space are assigned large edge weights.data

Our strategy is to first compute a real-valued function f : V → R on G with certain nice properties, and to then assign
labels based on f . Let f be the n × 1 vector of predictions f = [f(i)]i, i = 1, ..., n. We constrain f to take values
f(i) = fl(i) = yi on the labeled data i = 1, ..., l. Intuitively, we want unlabeled points that are nearby in the graph to
have similar labels. This motivates the choice of the quadratic energy function

E(f) =
1

2

∑
i,j

wij(f(i)− f(j))2 (2)

We form a Gaussian field pβ(f) = exp(−βE(f))
Zβ

where β is an “inverse temperature” parameter, and Zβ is the partition
function Zβ =

∫
f |L=fl exp (−βE(f)) df , which normalizes over all functions constrained to fl on the labeled data.

Problem 1.1.1 [10 points] Show that the minimum energy f = argminf |L=fl E(f) is harmonic, namely, it satisfies
∆f = 0 on unlabeled points U , and is equal to fl on the labeled data points L. Here ∆ is the combinatorial Laplacian,
given in matrix form as ∆ = D − W where D = diag(di) is the diagonal matrix with entries di =

∑
j wij and

W = [wij ]ij is the weight matrix.

Note: By ∆f , we mean the n× n matrix ∆ multiplied by the n× 1 vector of predictions f = [f(i)]i, i = 1, ..., n.

Problem 1.1.2 [10 points] Show that the harmonic property means that the value of f at each unlabeled data point is
the average of f at neighboring points:

f(j) =
1

dj

∑
i∼j

wijf(i), for j = l + 1, ..., l + u (3)

which is consistent with our prior notion of smoothness of f with respect to the graph.

Observe that we can also express f as f = Pf where P = D−1W .

To compute the harmonic solution explicitly in terms of matrix operations, we split the weight matrixW (and similarly
D,P ) into 4 blocks after the lth row and column:

W =

[
Wll Wlu

Wul Wuu

]
(4)

Problem 1.1.3 [10 points] Let f =

[
fl
fu

]
where fu denotes the values on the unlabeled data points. Show that the

harmonic solution ∆f = 0 subject to f |L = fl is given by

fu = (Duu −Wuu)−1Wulfl = (I − Puu)−1Pulfl (5)
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The learned function fu can now be used to predict the label of the unlabeled training datapoints. We predict 1 if
fu > 0.5 and 0 otherwise.

Problem 1.1.4 [15 points] We provide a subset of the MNIST dataset as the data. There are 600 labeled images of
which there are 300 images for digit 5 and 300 images for digit 6. All images for 5 have label 0 and all images for 6
have label 1. We use the same σd for all dimensions and we find that σ = 1.5 works well in practice.

Complete the get prediction function and submit it to Autolab for evaluation. The inputs of the functions include
X,Y, σ, l. The output of the function should be the predicted label on the unlabeled data. We will sample a subset of
the provided data and compare the results of your implementation with ours.

We use Python 2.7.5 for autograding. To make sure that your code works on Autolab, please use the following
command to install the correct version of numpy:

pip install ’numpy==1.7.1’

Submission Instructions: Run the following command to submit your code.

$ tar cvf src.tar src

Then submit your tarfile. Note that the autograding will take several minutes to complete. Hence we recommend you
to debug your code offline and see if it gets an reasonable accuracy for Problem 1.1.5 before submitting it.

Debugging Suggestions: A sanity check is to verify whether your model can overfit the labeled data. To verify this,
you can remove all unlabeled samples and instead copy the labeled samples as unlabeled samples. In other words, all
unlabeled samples will appear in the labeled set. Set σ to a small value so that the matrix W only contains 0 or 1 and
see if your code achieves an 100% accuracy.

Problem 1.1.5 [5 points] Randomly sample lk labeled images from each class k ∈ {0, 1}. This results in a total of
l = 2× lk labeled digits and u = 600− l unlabeled digits in the training set.

Please run the semi-supervised learning basic framework with the following choices of lk ∈ {3, 10, 50} and compute
the performance of digit classification on the unlabeled samples. Repeat the experiment five times, each time randomly
sampling a different subset of the labeled digits to reduce variance of the estimates and obtain an average accuracy on
the unlabeled set. You should be able to get an accuracy of around 97% when you set lk to 10.

Plot a graph of average accuracy on the unlabeled set against the value of lk and explain your observations.

1.2 Do Something Extra [50 points EXTRA CREDIT]

This section is reserved for students who wish to further investigate this algorithm for semi-supervised learning. This
section is entirely optional and will count for 50 points extra credit. You are required to suggest extensions to the
algorithm and evaluate their effectiveness. In more detail:

1. Clearly define and motivate the extension you are trying to pursue. What problem exists in the current algorithm,
and how does your proposed extension solve it?

2. Implement the extension and clearly include the implementation details. Describe all relevant details including
datasets, distance metrics, loss function, optimizer, classifier choices, etc.

3. Write a few paragraphs explaining the experimental results and discuss the effectiveness of the implemented
method. If it works well, give some intuitions (or even better, proofs) of why it improves performance. If it does
not work well, that’s fine too. Give some explanations for the performance and some possible fixes.

The grading for this section will be determined by the difficulty of the selected task, accuracy of implementation, and
quality of reporting of experimental results. Here are some suggested ideas:

1. Section 4 of [1]: Incorporating Class Prior Knowledge.

2. Section 5 of [1]: Incorporating External Classifiers.

3. Section 6 of [1]: Learning the Weight Matrix W .

3



4. Pick more challenging datasets (e.g. time series data, text, images video, multimodal data etc.) and test out the
algorithm with your choices of distance metrics. Explain why the chosen distance metric makes sense.

5. Use the intermediate representations learned from neural networks to compute distance metrics. Explore this
when the neural networks are pretrained, or when the networks are learned in an end-to-end manner. Does this
improve over distance metrics on raw features?

6. Extend [1] to work for multiclass classification.

Of course you are also encouraged to propose your own extensions. Good luck!
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2 k-means Clustering [35 points + 5 points EXTRA CREDIT]

Recall that given a set S = {x1, ..., xn} ⊆ Rd of n points in d-dimensional space, the goal of k-means clustering is to
find a set of centers c1, ..., ck ∈ Rd that minimize the k-means objective:

n∑
i=1

min
j∈{1,...,k}

‖xi − cj‖22 (6)

which measures the sum of squared distances from each point xj to its nearest center. To do so, we iterate between
assigning xi to the nearest cluster center and updating each cluster center cj to the average of all points assigned to the
j-th cluster.

2.1 Choosing k [5 points]

Instead of holding the number of clusters k fixed, one can think of minimizing (6) over both k and c. Show that this is
a bad idea. Specifically, what is the minimum possible value of (6)? what values of k and c result in this value?

2.2 Kernalized k-means [15 points]

k-means with Euclidean distance metric assumes that each pair of clusters is linearly separable. This may not be the
case. A classical example is where we have two clusters corresponding to data points on two concentric circles in
the R2 plane. We have seen that we can use kernels to obtain a non-linear version of an algorithm that is linear by
nature and k-means is no exception. Recall that there are two main aspects of kernelized algorithms: (i) the solution is
expressed as a linear combination of training examples, (ii) the algorithm relies only on inner products between data
points rather than their explicit representation. We will show that these two aspects can be satisfied in k-means.

1. [5 points] Let zij be an indicator that is equal to 1 if xi is currently assigned to the j-th cluster and 0 otherwise
(1 ≤ i ≤ n and 1 ≤ j ≤ k). Show that the j-th cluster center cj can be updated as

∑n
i=1 αijxi. Specifically,

show how αij can be computed given all z’s.

2. [5 points] Given two data points x1 and x2, show that the square distance ‖x1 − x2‖22 can be computed using
only (linear combinations of) inner products.

3. [5 points] Given the results of parts 1 and 2, show how to compute the square distance ‖xi − cj‖22 using only
(linear combinations of) inner products between the data points x1, ..., xn.

Note: This means that given a kernel K, we can run Lloyds algorithm. We begin with some initial data points
as centers and use the answer to part 1 to find the closest center for each data point, giving us the initial zij’s.
We then repeatedly use the answer to part 2 to reassign the points to centers and update the zij’s.

2.3 k-means for Single Dimensional Data [15 points + 5 points EXTRA CREDIT]

In this problem you will show that the k-means objective (6) can be minimized in polynomial time when the data
points are single dimensional (d = 1), despite the fact that in general finding the optimal centers is NP-hard.

1. [3 points] Consider the case where k = 3 and we have 4 data points x1 = 1, x2 = 3, x3 = 6, x4 = 7. What is
the optimal clustering for this data? What is the corresponding value of the objective (6).

2. [5 points] One might be tempted to think that Lloyds method is guaranteed to converge to the global minimum
when d = 1. Show that there exists a suboptimal cluster assignment for the data in part (1) that Lloyds algorithm
will not be able to improve (to get full credit, you need to show the assignment, show why it is suboptimal and
explain why it will not be improved).
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3. [7 points] Assume we sort our data points such that x1 ≤ x2 ≤ ≤ xn. Prove that an optimal cluster assignment
has the property that each cluster corresponds to some interval of points. That is, for each cluster j, there exits
i1 and i2 such that the cluster consists of {xi1 , xi1+1

, ..., xi2}.

4. [5 points EXTRA CREDIT] Develop an O(kn2) dynamic programming algorithm for single dimensional k-
means. (Hint: from part (3), what we need to optimize are k − 1 cluster boundaries where the ith boundary
marks the largest point in the ith cluster.)
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3 Disagreement-based Active Learning [15 points]

3.1 True or False [6 points]

Answer the following questions. If your answer is True, provide 1-2 sentences to justify your answer. If your answer
is False, give a counter-example if possible. Recall from the lecture notes that a classification problem is realizable
if the true labeling function h∗ is in our hypothesis class H . Given a set of labeled examples {(xt, yt)}nt=1, where
yt = h∗(xt),∀t = 1, ..., n, the version space H ′ ⊆ H is a subset of H in which the hypotheses are consistent with the
labels seen so far. The region of disagreement with respect to a version space H ′, denoted as DIS(H ′), is defined to be
the part of data space about which there is still some uncertainty. More specifically, DIS(H ′) = {x ∈ X : ∃h1, h2 ∈
H ′, h1(x) 6= h2(x)}.

1. [2 points] Assume the problem is realizable. Given a concept class H and a sequence of training instances
{(xt, yt)}nt=1. Let Ht ⊆ H be the version space after the learner has received the t-th instance. Then Ht 6=
∅,∀t = 1, ..., n.

2. [2 points] Assume the problem is realizable. Given a concept class H and a sequence of training instances
{(xt, yt)}nt=1. Let Ht ⊆ H be the version space after the learner has received the t-th instance. After all n
examples have been observed we have |Hn| = 1.

3. [2 points] Let X = {(xt, yt)}nt=1 be a set of n training instances and H be the hypothesis space. Assume our
current version space is H ′. Pick x0 ∈ DIS(H ′). Let Ĥ be the version space of X after querying x0, i.e., the
version space ofX∪{(x0, y0)}, where y0 is provided by the true labeling function, then it must be that Ĥ 6= H ′.

3.2 An Example [9 points]

Consider a binary classification problem where the sample space is Ω = {(x, y) : ‖x‖2 ≤ 2, y ∈ {+1,−1}}. Let the
concept class H = {w : w ∈ R2, ‖w‖2 = 1}, i.e., the set of linear classifiers where the decision rule is given by:

hw(x) =

{
+1 w>x ≥ 0

−1 w>x < 0
(7)

In this problem we assume that H is realizable. Suppose after receiving a sequence of training instances we know that
the entire sector AOB shown in Figure 1 is +1 and the entire sector COD is −1. Both sectors AOB and COD are
symmetric with respect to the x1-axis and ∠AOB = ∠COD = π

3 .
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Figure 1: All hypotheses in the version space label the blue region as +1 and the red region as −1.

1. [3 points] Explicitly write down the version space H1 ⊆ H that is consistent with all the instances in sectors
AOB and COD and draw H1 in Figure 1. Specifically, in Figure 1, shade in the region that corresponds to the
set of vectors w such that hw ∈ H1.

2. [3 points] Suppose we receive a new instance (x, y) = ((−1,
√

3),+1). Write down the new version space
H2 ⊆ H that is consistent with all the instances in both sectors as well as the new instance. Draw H2 in
Figure 2a.

3. [3 points] This time another new instance with negative label (x, y) = ((1,
√

3),−1) has been received. Write
down the new version space H3 ⊆ H that is consistent with all the instances in both sectors along with the two
new instances. Draw H3 in Figure 2b.

(a) A new instance (x, y) = ((−1,
√
3),+1) is received (b) Another new instance (x, y) = ((1,

√
3),−1) is received

Figure 2: New instances are received.
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4 From Active Heaven to Adversarial Hell [15 points EXTRA CREDIT]

In this problem we will explore how the rate by which an algorithm learns a concept can drastically change based
on how labeled examples are obtained. For that we look at three settings: (i) an active learning setting where the
algorithm has the luxury of specifying a data point and querying its label, (ii) a passive learning setting where labeled
examples are drawn at random and (iii) an adversarial setting where training examples are given by an adversary that
tries to make your life hard.

Consider a binary classification problem where each data point consists of d binary features. Let H be the hypothesis
class of conjunctions of subsets of the d features and their negations. So for example one hypothesis could be h1(x) =
x1 ∧ x2 ∧ ¬xd (where ∧ denotes logical ‘and’ and ¬ denotes logical ‘not’). Another hypothesis could be h2(x) =
¬x3 ∧ x5. A third hypothesis could be h3(x) = 1 (a conjunction of zero features). A conjunction in H cannot contain
both xi and ¬xi. We assume a consistent learning scenario where there exists a hypothesis h∗ ∈ H that is consistent
with the true label for all data points.

1. [5 points EXTRA CREDIT] In the active learning setting, the learning algorithm can query the label of an
unlabeled example. Assume that you can query any possible example. Show that, starting with a single positive
example, you can exactly learn the true hypothesis h∗ using d queries.

2. [5 points EXTRA CREDIT] In the passive learning setting, the examples are drawn i.i.d from an unknown
distribution. According to PAC learning theory, how many examples (in big-O) are required to guarantee a
generalization error less than ε with probability 1− δ? (Hint: the VC dimension of the class of conjunctions of
d binary features is d).

3. [5 points EXTRA CREDIT] Show that if the training data is not representative of the underlying distribution,
a consistent hypothesis can perform poorly. Specifically, assume that the true hypothesis h∗ is a conjunction of
k out of the d features for some k > 0 and that all possible data points are equally likely. Show that there exists
a training set of 2(d−k) unique examples and a hypothesis ĥ that is consistent with this training set but achieves
a classification error ≥ 50% when tested on all possible data points.
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