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Naive Bayes Recap
Classifier: f*(x) = arg max P(y|x)
d
NB Assumption: P(X;...X4]Y) = HP(XilY)
i=1

NB Classifier: d
fus () = argmax | | PGxily)P()
i=1

Assume parametric form for P(X,|Y) and P(Y)
— Estimate parameters using MLE/MAP and plug in



Generative vs. Discriminative
Classifiers

Generative classifiers (e.g. Naive Bayes)

* Assume some functional form for P(X,Y) (or P(X]Y) and P(Y))

 Estimate parameters of P(X|Y), P(Y) directly from training data
» Use Bayes rule to calculate P(Y|X)

Why not learn P(Y|X) directly? Or better yet, why not learn the
decision boundary directly?

Discriminative classifiers (e.g. Logistic Regression)

* Assume some functional form for P(Y|X) or for the decision boundary

 Estimate parameters of P(Y|X) directly from training data



Logistic Regression

Assumes the following functional form for P(Y | X):

1 exp(wo + 2 wiXj)

P(Y=1|X) = -
( 1X) 1 +exp(—(wo + 2 wiX;))  exp(wp + X; wiXj) +1

Logistic function applied to a linear
function of the data
Logistic .TD;"D o
function 1 9
(or Sigmoid): 1+exp(-z)

Features can be discrete or continuous!



Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y | X):

1

exp(wo + 2 wiXj)

P(Y=1|X) =

Decision boundary:

P(Y =1|X) > P(Y =0[X)?

WO+ZWiXi > 07
i

(Linear Decision Boundary)

1+ exp(—(wo + X wiX;j))  exp(wg + 2iwiX;) +1

w0+2wiXi =0
I i




Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y | X):

P(Y = 1]X) = 1 _exp(wg + 2 wiX;)
1+ exp(—(wo + 2 wiXj)) exp(wo + 2;wiX;) + 1
wy + EwiXi =0
Assumes a linear decision boundary: there are weights w; I i
s.t. when wy + Y; wiX; > 0, the example is more likely to . .
be positive, and when this linear function is negative (w, + .

Y. wiX; < 0) the example is more likely to be negative.

wo + XiwiX; = 0, P(Y = 1]X) :%

Wp +ZIW1X1—>OO'P(Y=1|X)_)1 ° , o

wo + 2iwiX; = —oo, P(Y =1|X) = 0 « 0/ 0©




Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y | X):

) ) 1 ~exp(wp + X wiXj)
P(Y = 1|X) — 1 + exp(—(Wo + ZiWiXi)) o exp(wo + ZiWiXi) +1
= P(Y =0|X) = .
B ~ exp(wy + 2iwiX;) +1
P(Y = 1|X)
= P(Y — le) — exp(WO + ZWIXI) > 17?
1

= WO+zWiXi > 07
i




Training Logistic Regression

1
_ o P(Y = 0|X,w) =
We’ll focus on binary classification: 1+ exp(wo + 2; WiX;)

exp(wp + 2 WiX;)

P(Y = 1|X, =
( X, w) 1+ exp(wg + X wiX;)

How to learn the parameters wy, wy, ..., wg?

- . ' N ) _ (v0) ()
Training data: {(X(]),Y(J))}j=1 X0 = (X1 y s X )
Maximum Likelihood Estimates:

n
WMLE = arg max 1_[ P(X(j),Y(j)|w)
w 1

j
But there’s a problem...

Don't have a model for P(X) or P(X|Y) - only for P(Y|X)



Training Logistic Regression

How to learn the parameters w,, wl, ... w,?

Training data: {(X(J'),Y(j))}jn:1 X0 = (ng), ...,Xg))

Maximum (Conditional) Likelihood Estimates

n
WMCLE = arg max 1_[ P(Y(j)|X(j),w)
w i1

Discriminative philosophy — Don’t waste effort learning P(X), focus
on P(Y|X) — that’s all that matters for classification!

10



Expressing Conditional log Likelihood

1 exp(wg + 2 wiXj)
P(Y = 1[X, w) = -
1+ exp(wg + X; wiXj) ( X, w) 1+ exp(wg + X; wiXj)

P(Y = 0|X, w) =

I(w) =1n 1_[ P(yl|x), w)
j

3 i i i
= z y) <w0 + z wix{:> — In (1 + exp <WO + Z wix];))
i=1

i=1

11



Maximizing Conditional log Likelihood

maxl(w) = lnr P(y/|x), w)

w
_ | | _
=z y) w0+2wix{ —In[ 1+ exp WO"'zWiX;
i=1

=1

Good news: 1(w) is concave in w. Local optimum = global optimum
Bad news: no closed-form solution to maximize [(w)

Good news: concave functions easy to optimize (unigue maximum)

12



Optimizing concave/convex function

e Conditional likelihood for Logistic Regression is concave

e Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

25 Gradient:
ol(w) ol(w)
owy, 0wy

V,l(w) =

Update rule: / Learning rate, >0

Aw = 1V, l(w)

1 1

dl(w
(t+1) (t) ( )‘
t
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Gradient Ascent for Logistic
Regression

Gradient ascent algorithm: iterate until change < €

wit = wiV 4 T]E[yj - P(Y = 1|x, wV)]
J
Fori=1,...,d:

wD = w® 4 2 <[yl — B(Y) = 1)%), w®)]
j J

1
\

I

repeat Predict what current weight
thinks label Y should be

look at actual labels of the examples, compare them to our current predictions, and then for each
example j we multiply that difference by the feature value X{ and then add them up.
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Gradient Ascent for Logistic
Regression

Gradient ascent algorithm: iterate until change < €

wit = wiV 4 T]E[yj - P(Y = 1|x, wV)]
J
Fori=1,...,d:

wit = w® 4 2 [yl = P(Y = 1|x), w®))]
j )

I

repeat Predict what current weight
thinks label Y should be

e Gradient ascent is simplest of optimization approaches
— e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)
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Effect of step-size n
—I(w) —I(w)

Large n = Fast convergence but larger residual error
Also possible oscillations

Smalln = Slow convergence but small residual error
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That’s all M(C)LE. How about MAP?
p(w|Y,X) o« P(Y|X w)p(w)

* One common approach is to define priors on w
— Normal distribution, zero mean, identity covariance

— “Pushes” parameters towards zero

* Corresponds to Regularization

— Helps avoid very large weights and overfitting

— More on this later in the semester

« M(C)AP estimate

w

_ ) _
w* = argmaxIn |p(w) 1_[ P(y) | x),w)
I j=1 ]



What you should know

LR is alinear classifier: decision rule is a hyperplane

* LR optimized by conditional likelihood

— no closed-form solution
— concave = global optimum with gradient ascent
— Maximum conditional a posteriori corresponds to regularization



