Reinforcement Learning

Maria-Florina Balcan Carnegie Mellon University

11/19/2018

Today:

- Learning of control policies
- Markov Decision Processes
- Temporal difference learning
- Q learning

Readings:

- Mitchell, chapter 13
- Kaelbling, et al., *Reinforcement Learning: A Survey*

Overview

- Different from ML pbs so far:
	- Our decisions influence the next example we see. Decisions we make will be about actions to take (e.g., a robot deciding which way to move next), which will influence what we see next.
	- Goal will be not just to predict (say, whether there is a door in front of us or not) but to decide what to do.
- Model: Markov Decision Processes.

Reinforcement Learning

Main impact of our actions will not come right away but instead that will only come later.

 $V^*(s) = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$ t \top γ $\mathbf{1}_{t+1}$ * $(s) = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} +$

Reinforcement Learning: Backgammon

Learning task:

• chose move at arbitrary board states

Training signal:

• final win or loss at the end of the game

Training:

• played 300,000 games against itself

Algorithm:

• reinforcement learning + neural network

Result:

• World-class Backgammon player

[Tessauro, 1995]

Outline

- Learning control strategies
	- Credit assignment and delayed reward
	- Discounted rewards
- Markov Decision Processes
	- Solving a known MDP
- Online learning of control strategies
	- When next-state function is known: value function V* (s)
	- When next-state function unknown: learning Q* (s,a)
- Role in modeling reward learning in animals

Reinforcement Learning Problem

Agent lives in some environment; in some

- state:
• Robot: where robot is, what direction it is pointing, etc.
- Backgammon, state of the board (where all pieces are).

Goal: Maximize long term discounted reward. I.e.: want a lot of reward, prefer getting it earlier to etting it later.

Goal: Learn to choose actions that maximize

$$
r_0 + \gamma r_1 + \gamma^2 r_2 + \dots
$$
, where $0 \le \gamma < l$

Markov Decision Process = Reinforcement Learning Setting

• Set of states S

- Set of actions A
- At each time, agent observes state $s_t \in S$, then chooses action $a_t \in A$
- Then receives reward r_t , and state changes to s_{t+1}
- Markov assumption: $P(s_{t+1} | s_t, a_t, s_{t-1}, a_{t-1}, ...) = P(s_{t+1} | s_t, a_t)$
- Also assume reward Markov: $P(r_t | s_t, a_t, s_{t-1}, a_{t-1},...) = P(r_t | s_t, a_t)$

E.g., if tell robot to move forward one meter, maybe it ends up moving forward 1.5 meters by mistake, so where the robot is at time t+1 can be a probabilistic function of where it was at time t and the action taken, but shouldn't depend on how we got to that state.

• The task: learn a policy $\pi: S \rightarrow A$ for choosing actions that maximizes $E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$ 0 < γ < 1

for every possible starting state s_0

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

Learn control policy $\pi: S\rightarrow A$ that maximizes $\sum_{n=1}^{\infty} \gamma^t E[r_t]$ from every state $s \in S$ $t = 0$

Example: Robot grid world, deterministic reward *r(s,a)*

- Actions: move up, down, left, and right [except when you are in the top-right you stay there, and say any action that bumps you into a wall leaves you were you were]]
- reward fns r(s,a) is deterministic with reward 100 for entering the top-right and 0 everywhere else.

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

• Learn control policy $\pi: S\rightarrow A$ that maximizes $\sum \gamma^t E[r_t]$ $t=0$ from every state $s \in S$

Yikes!!

- Function to be learned is $\pi: S \rightarrow A$
- But training examples are not of the form <s, a>
- They are instead of the form \lt \lt s,a $>$, r $>$

Value Function for each Policy

Given a policy $\pi : S \rightarrow A$, define

assuming action sequence chosen

according to π , starting at state *s*

expected discounted reward we will get starting from state s if we follow policy π .

• Goal: find the *optimal* policy π^* where $\pi^* = \arg \max V^{\pi}(s), \quad (\forall s)$

policy whose value function is the maximum out of all policies simultaneously for all states

- For any MDP, such a policy exists!
- We'll abbreviate $V^{\pi^*}(s)$ as $V^*(s)$
- Note if we have $V^*(s)$ and $P(s_{t+1} | s_t, a)$, we can compute $\pi^*(s)$

 $\pi^*(s) = argmax_a[r(s, a) + \gamma]$ $\overline{\mathcal{S}^{\prime}}$ $P(s' | s, a)V^*(s')$

100

 100

 $r(s, a)$ (immediate reward)

Value Function – what are the $V^{\pi}(s)$ values? $V^{\pi}(s) = E[\sum_{l} \gamma^{t} r_{t}]$ $t=0$
Suppose π is shown by circled action from each Suppose $\gamma = 0.9$ s tate

 $r(s, a)$ (immediate reward)

Value Function – what are the V* (s) values? $V^{\pi}(s) = E[\sum^{\infty} \gamma^{t} r_t]$ $t=0$

 $r(s, a)$ (immediate reward)

Immediate rewards r(s,a)

State values V*(s)

 $r(s, a)$ (immediate reward) values

One optimal policy

Recursive definition for V*(S)

$$
V^*(s) = E[\sum_{t=0}^{\infty} \gamma^t r_t]
$$

assuming actions are chosen according to the optimal policy, π^*

$V^*(s_1) = E[r(s_1, a_1)] + E[\gamma r(s_2, a_2)] + E[\gamma^2 r(s_3, a_3)] + \ldots]$

$$
V^*(s_1) = E[r(s_1, a_1)] + \gamma E_{s_2|s_1, a_1}[V^*(s_2)]
$$

Value $V^*(s_1)$ of performing optimal policy from s_1 , is expected reward of the first action a_1 taken plus γ times the expected value, over states s_2 reached by performing action a_1 from s_1 , of the value $V^*(s_2)$ of performing the optimal policy from then on.

$$
V^*(s) = E[r(s, \pi^*(s))] + \gamma E_{s'|s, \pi^*(s)}[V^*(s')]
$$

optimal value of any state s is the expected reward of performing $\pi^*(s)$ from s plus ν times the expected value, over states s' reached by performing that action from state s, of the optimal value of s'.

Value Iteration for learning V^* : assumes $P(S_{t+1} | S_t, A)$ known

Initialize $V(s)$ to 0 [optimal value can get in zero steps]

For $t=1, 2, \ldots$ [Loop until policy good enough]

Loop for s in S Loop for a in A Inductively, if V is optimal discounted reward can get in t-1 steps, Q(s,a) is value of performing action a from state s and then being optimal from then on for the next t-1 steps.

$$
Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V(s')
$$

$$
V(s) \leftarrow \max_{a} Q(s,a)
$$

End loop End loop Optimal expected discounted reward can get by taking an action and then being optimal for t-1 steps= optimal expected discounted reward can get in t steps.

 $V(s)$ converges to $V^*(s)$

Dynamic programming

Value Iteration for learning V^* : assumes $P(S_{t+1} | S_t, A)$ known

Initialize $V(s)$ to 0 [optimal value can get in zero steps]

For $t=1, 2, \ldots$ [Loop until policy good enough]

Loop for s in S

each round we are computing the value of performing the optimal t-step policy starting from t=0, then t=1, t=2, etc, and since γ^t goes to 0, once t is large enough this will be close to the optimal value V^* for the infinite-horizon case.

Loop for a in A

$$
Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V(s')
$$

$$
V(s) \leftarrow \max_{a} Q(s,a)
$$

End loop

End loop

 $V(s)$ converges to $V^*(s)$

Dynamic programming

Value Iteration for learning V^* : assumes $P(S_{t+1} | S_t, A)$ known

Initialize $V(s)$ to 0 [optimal value can get in zero steps]

For $t=1, 2, \ldots$ [Loop until policy good enough]

Loop for s in S

Loop for a in A

$$
Q(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s')
$$

$$
V(s) \leftarrow \max_{a} Q(s,a)
$$

End loop

End loop

- Round $t=0$ we have $V(s)=0$ for all s.
- After round $t=1$, a top-row of 0, 100, 0 and a bottom-row of 0, 0, 100.
- After the next round $(t=2)$, a top row of 90, 100, 0 and a bottom row of 0, 90, 100.
- After the next round (t=3) we will have a top-row of 90, 100, 0 and a bottom row of 81, 90, 100,

Value Iteration

So far, in our DP, each round we cycled through each state exactly once.

- Interestingly, value iteration works even if we randomly traverse the environment instead of looping through each state and action methodically
- but we must still visit each state infinitely often on an infinite run
- For details: [Bertsekas 1989]
- Implications: online learning as agent randomly roams

If for our DP, max (over states) difference between two successive value function estimates is less than ε , then the value of the greedy policy differs from the optimal policy by no more than

$$
2\epsilon\gamma/(1-\gamma)
$$

So far: learning optimal policy when we know $P(s_t | s_{t-1}, a_{t-1})$

What if we don't?

Tom Mitchell, April 2011

Q learning

Define new function, closely related to V^*

 $V^*(s) = E[r(s, \pi^*(s))] + \gamma E_{s'|\pi^*(s)}[V^*(s')]$

V*(s) is the expected discounted reward of following the optimal policy from time 0 onward.

$$
Q(s, a) = E[r(s, a)] + \gamma E_{s'|a}[V^*(s')]
$$

Q(s,a) is the expected discounted reward of first doing action a and then following the optimal policy from the next step onward.

If agent knows Q(s,a), it can choose optimal action without knowing $P(s_{t+1} | s_t, a)$!

$$
\pi^*(s) = \arg \max_a Q(s, a) \qquad V^*(s) = \max_a Q(s, a)
$$

Just chose the action that maximizes the Q value

And, it can <u>learn</u> Q without knowing P(s_{t+1}|s_t,a)

using something very much like the dynamic programming algorithm we used to compute V*.

- Immediate rewards r(s,a)
- State values V*(s)
- State-action values Q*(s,a)

$$
V^*(s) = E[r(s, \pi^*(s))] + \gamma E_{s'|s, \pi^*(s)}[V^*(s')
$$

 $r(s, a)$ (immediate reward) values

Bellman equation.

$$
Q(s, a) = E[r(s, a)] + \gamma E_{s'|a}[V^*(s')
$$

Consider first the case where P(s'| s,a) is deterministic

One optimal policy

Training Rule to Learn Q

[simplicity assume the transitions and rewards are deterministic.]

Note Q and V^* closely related:

$$
V^*(s) = \max_{a'} Q(s, a')
$$

Optimal value of a state s is the maximum, over actions a' of Q(s,a').

Which allows us to write Q recursively as

$$
Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)))
$$

=
$$
r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')
$$

Nice! Let \hat{Q} denote learner's current approximation to Q . Consider training rule

$$
\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')
$$

Given current approx \hat{Q} to Q, if we are in state s and perform action a and get to state s', update our estimate $\hat{Q}(s, a)$ to the reward r we got plus gamma times the maximum over a' of $\hat{Q}(s', a')$

where s' is the state resulting from applying action a in state s

Q Learning for Deterministic Worlds

For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- \bullet Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows: $\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$

Updating \hat{Q}

$$
\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')
$$

$$
\leftarrow 0 + 0.9 \max\{63, 81, 100\}
$$

$$
\leftarrow 90
$$

notice if rewards non-negative, then

$$
(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \ge \hat{Q}_n(s, a)
$$

and

$$
(\forall s, a, n) \ \ 0 \le \hat{Q}_n(s, a) \le Q(s, a)
$$

 Q converges to Q . Consider case of deterministic world where see each $\langle s, a \rangle$ visited infinitely often.

Proof: Define a full interval to be an interval during which each $\langle s, a \rangle$ is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ

Let \hat{Q}_n be table after *n* updates, and Δ_n be the maximum error in \ddot{Q}_n ; that is

$$
\Delta_n = \max_{s,a} |\hat{Q}_n(s,a) - Q(s,a)|
$$

For any table entry $\hat{Q}_n(s, a)$ updated on iteration $n+1$, the error in the revised estimate $\ddot{Q}_{n+1}(s,a)$ is $|\hat{Q}_{n+1}(s, a) - Q(s, a)| = |(r + \gamma \max_{a'} \hat{Q}_n(s', a'))|$ Use general fact: $\left|\max f_1(a) - \max f_2(a)\right| \leq$ $-(r + \gamma \max_{s'} Q(s', a'))$ $\max_{a} |f_1(a) - f_2(a)|$ $= \gamma \big|\max_{a'} \hat{Q}_n(s',a') - \max_{a'} Q(s',a')\big|$ $\leq \gamma \max_{a'} |\hat{Q}_n(s',a') - Q(s',a')|$ $\leq \gamma \max_{s'', a'} |\hat{Q}_n(s'', a') - Q(s'', a')|$ $|\hat{Q}_{n+1}(s,a)-Q(s,a)| \leq \gamma \Delta_n$

Nondeterministic Case

Q learning generalizes to nondeterministic worlds Alter training rule to $\hat{Q}_n(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r + \max_{a'} \hat{Q}_{n-1}(s',a')]$ where 1

$$
\alpha_n = \frac{1}{1+visits_n(s,a)}
$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]

Rather than replacing the old estimate with the new estimate, you want to compute a weighted average of them: $(1 - \alpha_n)$ times your old estimate plus α_n times your new estimate. This way you average out the probabilistic fluctuations, and one can show that this still converges.

MDP's and RL: What You Should Know

- Learning to choose optimal actions A
- From *delayed reward*
- By learning evaluation functions like V(S), Q(S,A)

Key ideas:

- If next state function S_t x $A_t \rightarrow S_{t+1}$ is known
	- can use dynamic programming to learn V(S)
	- once learned, choose action A_t that maximizes $V(S_{t+1})$
- If next state function $S_t \times A_t \rightarrow S_{t+1}$ unknown
	- $-$ learn Q(S_t,A_t) = E[V(S_{t+1})]
	- to learn, sample S_t x $A_t \rightarrow S_{t+1}$ in actual world
	- once learned, choose action A_t that maximizes $\mathsf{Q}(\mathsf{S}_\mathsf{t},\mathsf{A}_\mathsf{t})$

