
As you walk in

1) Introduce your self to people around you

2) Log into piazza.com (we’ll use it for polls in class)

▪ Any device is fine

▪ On a phone, the browser tends to work better than
the app for polls

www.cs.cmu.edu/~112/gallery.html

http://www.cs.cmu.edu/~112/gallery.html

www.cs.cmu.edu/~112/gallery.html

http://www.cs.cmu.edu/~112/gallery.html

15-112
Lecture 2

Basic Programming
Constructs

Instructor: Pat Virtue

Tuesday Logistics

[Practice] Poll 1

Are you new to CMU?

Course Team

https://www.cs.cmu.edu/~112/staff.html

https://www.cs.cmu.edu/~112/staff.html

Course Team

Course administrative assistant

Marcie!

Course Team

Students!

[Practice] Poll 2

What college are you in?

A) BXA

B) CFA

C) CIT

D) DC

E) MCS

F) SCS

G) TSB

H) MIS/CMU/Other

[Practice] Poll 2 Take 2

What college is a person sitting next to you in?

A) BXA

B) CFA

C) CIT

D) DC

E) MCS

F) SCS

G) TSB

H) Other

Course Team

Students!

Course Information
Website: https://www.cs.cmu.edu/~112

Communication: https://piazza.com

If piazza doesn’t work:

 E-mail: pvirtue@andrew.cmu.edu, mdtaylor@andrew.cmu.edu

https://www.cs.cmu.edu/~112
https://piazza.com/
mailto:pvirtue@andrew.cmu.edu
mailto:mdtaylor@andrew.cmu.edu

Announcements
Recitation

Wednesday & Friday

▪ Both days required

▪ Attend your assigned section

▪ Friday: GHC 5th Floor Clusters

Announcements
Assignments:

https://www.cs.cmu.edu/~112/schedule.html

112 student contract

▪ Due Tomorrow 8/30, 11:59 pm

HW1

▪ Due Saturday 9/2, 8 pm

Week 2 Pre-reading Checkpoint

▪ Released by Thursday

▪ Due Mon 9/3, 8 pm

https://www.cs.cmu.edu/~112/schedule.html

Weekly Rhythm
https://www.cs.cmu.edu/~112/schedule.html

Sun Mon Tue Wed Thu Fri Sat

Week 1

Week 2

Week 3

https://www.cs.cmu.edu/~112/schedule.html

Course Resources
Use 112 resources wisely!

Lecture Logistics

Polls

▪ One participation point for *each* take

▪ Correctness of answer doesn’t count

▪ Profs really do use this as realtime feedback on your understanding

▪ Don’t stress

▪ Tech issues

▪ One-time issue: no problem, you just need >= 80%

▪ Persistent issue: let us know so we can find a solution

▪ Used for educational technique call Peer Instruction (more on this later

Lecture Logistics

Notes

CS Academy notes

▪ Required reading (and viewing)

Pat’s Slides

▪ Additional resource. Helpful for lecture notetaking and review

▪ Preview version posted before lecture (on website Schedule)

▪ Inked versions posted later (on website Schedule)

Taking notes

Devices in lecture

Thursday Logistics

Thursday Announcements
Recitation

Friday

▪ Required

▪ GHC 5th Floor Clusters (see link to GHC 5 video on syllabus)

Thursday Announcements
Assignments:

https://www.cs.cmu.edu/~112/schedule.html

112 student contract

▪ Due YESTERDAY 8/30, 11:59 pm

HW1

▪ Due Saturday 9/2, 8 pm

Week 2 Pre-reading Checkpoint

▪ Released by Thursday

▪ Due Mon 9/3, 8 pm

https://www.cs.cmu.edu/~112/schedule.html

Weekly Rhythm
https://www.cs.cmu.edu/~112/schedule.html
https://www.cs.cmu.edu/~112/syllabus.html

Sun Mon Tue Wed Thu Fri Sat

Week 1
Lec Rec

Contract
Lec Rec

HW due

Week 2
Quiz prep Pre-reading

Lec
Quiz in Lec

Rec Lec Rec
HW due

Week 3
Quiz prep Pre-reading

Lec
Quiz in Lec

Rec
Lec Rec

HW due

Support (see syllabus and watch Piazza)

▪ OH

▪ Practice Quiz

▪ Quiz Prep Session

https://www.cs.cmu.edu/~112/schedule.html
https://www.cs.cmu.edu/~112/syllabus.html

Lecture Logistics

Polls

▪ Polls this week don’t count. Just practicing Piazza.

▪ Don’t stress

▪ Tech issues

▪ One-time issue: no problem, you just need >= 80%

▪ Persistent issue: let us know so we can find a solution

Tips!
Tips for editing code

Run code without clicking Run button

▪ Ctrl/Cmd + Enter

Comment or uncomment block of code

1. Select multiple lines together

2. Ctrl/Cmd + /

Indent or unindent block of code

1. Select multiple lines together

2. Indent: Ctrl/Cmd + Tab

 Unindent: Ctrl/Cmd + Shift + Tab

Getting Started with Python

Hello World!

Classic start to new tech

print("Hello World!")

But where can we run this?

Running Python

CS Academy

▪ Edit code boxes in notes

▪ Exercises

▪ Sandbox!

Python file /editor

Python interpreter

Python files/editor vs Python interpreter

Python files and editor

Write and save code

Python interpreter

Quickly test code and explore

Python files/editor vs Python interpreter
Python files and editor

▪ Write and save code

▪ Need to explicitly run code

Python interpreter

▪ Runs each line when you hit enter

▪ Auto prints resulting object

▪ Quickly test code and explore

Running Python

Pythontutor

▪ Help *see* how Python works

Running Python

Pythontutor

▪ Help *see* how Python works

▪ Helpful to learn how to write
out work for code tracing

Recommended setting
(bottom-left)

Running Python

(more details later in course)

Terminal (a.k.a. command line) → python → Python interpreter

(Code) Editor myFile.py → Terminal: python myFile.py

IDE (Integrated development environment)

▪ Editor connected with terminal/interpreter

▪ VS Code (more details later in course)

Printing

Printing
We can print a few different types of things in Python:

▪ Text (which we call a "string")

 print('Hello World!’)

 Hello World!

▪ Numbers (which we'll separate into integers and floating point numbers)

 print(123)

 print(12.3)

▪ Expressions (which evaluate to a value before we print them)

 print(12+3)

 15

Printing Multiple Things
Call the print function with multiple arguments separated by commas

(An "argument" is a value that we pass to a function)

 print('12+3:', 12+3)

 12+3 = 15

This will print them separated by spaces (not commas)

 print('Thing1', 'Thing2’)

 Thing1 Thing2

Printing with f-strings (formatted strings)
By putting the letter f right before a string, you can then

place variable names in {squiggly braces} to print their values, like so:

 x = 42

 y = 99

 print(f'Did you know that {x} + {y} is {x+y}?’)

 Did you know that 42 + 99 is 141?

Since the introduction of f-strings in Python, this has become a popular
way to print combinations of text and values.

The print function
print is a function. The print function will send text to the console
output.

Like in math, Python functions return values, and we can assign those
values to variables, e.g. y = abs(-7)

But, some functions, like print, just return the special Python value None

 y = print('Hello World!’)

 print(f'The value of y is {y}.')

 Hello World!

 The value of y is None.

Operators and expressions

Operators Summary
Arithmetic

▪ +, -, *, /, **, //, %, - (unary), + (unary)

Comparison

▪ <, <=, >=, >, ==, !=

Assignment

▪ +=, -=, *=, /=, //=, **=, %=

Logical

▪ and, or, not

Note: not covering the bitwise operators (for now at least)

<<, >>, &, |, ^, ~, &=, |=, ^=, <<=, >>=

Arithmetic Operators

print(6 + 2)

print(6 - 2)

print(6 * 2)

print(6 / 2)

8
4
12
3.0
>>>

Arithmetic operators

Operator
Example
Python

Example
Result

Addition 3+5 8

Subtraction 3-5 -2

Multiplication 3*5 15

Division 3/5 0.6

Power (Exponent) 3**5 243

Negation -3 -3

Modulo “Mod”
(remainder)

5 % 3 2

“Div”
(integer division)

5 // 3 1

Expressions
Expression in Python are just segments of code that evaluate to a value
(or more specifically an object)

For arithmetic expressions, we need to pay attention to the order of
operations.

Paratheses

▪ Can change affect the order of operations, just like in math

▪ Can help clarify the order of operations, even when not necessary

▪ In general, don’t add unnecessary paraentheses unless for clarity

Order of operations

PEMDAS

https://www.youtube.com/watch?v=ZzeDWFhYv3E

https://www.youtube.com/watch?v=ZzeDWFhYv3E

Order of operations

PEMDAS

https://www.youtube.com/watch?v=ZzeDWFhYv3E

Tip

Be a robot!

https://www.youtube.com/watch?v=ZzeDWFhYv3E

Poll 3

What does this print?

print(2**3**2)

A) 7

B) 64

C) 512

D) Error

Debugging tip!

Expressions are things in Python that evaluate
to a value

1) Save expressions (of all sizes) to variables
2) Use print(expr) to confirm values and

order of operations

Poll 4

How many expressions are there in:

a - a // b * b

A) 1

B) 2

C) 3

D) 4

E) 5

F) Other

G) I have no idea

Errors

Natural Language

Which is correct?

A) Letss eat Grandma

B) Letss eat, Grandma

C) Lets eat Grandma

D) Lets eat, Grandma

E) Let’s eat Grandma

F) Let’s eat, Grandma

Lessons learned

▪ Sensitive to small things

▪ Like spelling, grammar, usage

▪ Different kinds of error

▪ Different from language to language

▪ Be patient while you learn

▪ With yourselves

▪ With each other

▪ Commas save lives

▪ Don’t consume your relatives

Errors

Syntax error
print("100") # Never prints

1 ? 0

print("200") # Never prints

Runtime error
print("100") # Prints!

1 / 0

print("200") # Never prints

Logical error
print(f"100:, {x}") # Prints!

if x % 2 == 1:

 print(f"{x} is even") # Prints?

print("200") # Prints!

Debugging tip!

▪ Use print functions to help
learn where runtime errors
are happening

Debugging tip!

▪ Use print functions to see if
branches of code are being
entered

Poll 5 (Unused)

What happens when we run the following line?

x = 3(2+7)

A) x takes on the value 27

B) Syntax error

C) Runtime error

D) Logical error

E) I have no idea

Errors

Tip

Keep a list of errors that you encounter along with what they might mean

TypeError: 'int' object is not callable

→ Hmm, I probably have number, variable, or expression followed by a (

 e.g., x = 3(2+7) should be x = 3*(2+7)

NameError: name 'total' is not defined

→ Hmm, I probably have variable named total that I never assigned a value
num = 10

mean = total/num

Strings and Comments

Poll 6 (Unused)

Which one does the right thing?

Select all that apply

A) print("Have you read "Pride and Prejudice" by Jane Austen?")

B) print("Have you read 'Pride and Prejudice' by Jane Austen?")

C) print('Have you read 'Pride and Prejudice" by Jane Austen?')

D) print('Have you read "Pride and Prejudice" by Jane Austen?')

Poll 6 (Unused)

Which one does the right thing?

Select all that apply

A) print("Have you read "Pride and Prejudice" by Jane Austen?")

B) print("Have you read 'Pride and Prejudice' by Jane Austen?")

C) print('Have you read 'Pride and Prejudice" by Jane Austen?')

D) print('Have you read "Pride and Prejudice" by Jane Austen?’)

print("Have you read "Pride and Prejudice" by Jane Austen?")

print("Have you read 'Pride and Prejudice' by Jane Austen?")

print('Have you read 'Pride and Prejudice" by Jane Austen?')

print('Have you read "Pride and Prejudice" by Jane Austen?')

Strings

Single or double quote are fine

▪ Can be useful for quotes withing strings (but alternated correctly)

▪ Escape characters are needed sometimes (more on this later in the course)

print('Have you read Jane Austen\'s "Pride and Prejudice" recently?')

▪ There are also triple quotes for multiline strings (actually, often used for
comments)

f-Strings

▪ Really useful to print a combination of strings and expressions
 x = 42

 y = 99

 print(f'Did you know that {x} + {y} is {x+y}?')

Comments Summary

Notes for humans (really important!)

Comments can go on their own line

i = 0 # Comments can go at the end of a line

def squared(x):

 """ This is technically a multiline string

 but is often used as a comment

 """

 return x**2

Comments

Comments are for humans

Comments are sections of text that we can write in Python (and most
computer languages) that provide helpful information for humans to
understand the associated code.

In Python, a # symbol (also called a "pound sign" or "hash symbol") begins
a comment and tells Python to ignore all of the contents from the # sign
until the end of the line.

Even though Python ignores the contents of a comment, comments are an
essential part of writing clear code!

print("Hello World!") # This is a comment
print("What will this line do?")

Comments

Comment on its own line

x = 7 # Comment after code

Multiline comments can be useful too

when you have more to say

or just want to make your comments easier to read

Comments

"""

Long comments can be written inside triple-quotes.

Either triple-single-quotes or triple-double-quotes
work.

These can save you from writing a # on every line.

(these long quotes are technially strings that are

just ignored by Python.)

"""

Poll 7 (Unused)
Which of the following
will be printed?

Select all that apply

A. ONE

B. TWO

C. THREE

D. FOUR

E. FIVE

F. SIX

G. SEVEN

H. EIGHT

I. NINE

"""
print("ONE")
print("TWO")
"""
print("THREE")
print("FOUR")
print("FIVE")
print("SIX") #
print("SEVEN")
print("EIGHT") # print("NINE")

Poll 7 (Unused)
Which of the following
will be printed?

Select all that apply

A. ONE

B. TWO

C. THREE

D. FOUR

E. FIVE

F. SIX

G. SEVEN

H. EIGHT

I. NINE

"""
print("ONE")
print("TWO")
"""
print("THREE")
print("FOUR")
print("FIVE")
print("SIX") #
print("SEVEN")
print("EIGHT") # print("NINE")

Variables

Poll 8
Which of the following will result in the variable x being 0.4?

Select all that apply

A. x = 0.4

B. 0.4 = x

C. x = 2/5

D. 2/5 = x

E. 5x = 2

F. 2 = 5x

G. 5*x = 2

H. 2 = 5*x

I. None of the above

Variables Summary
x = 4

y = x**2

print(x)

print(y)

Reassign x to 3

x = 3

print(x)

print(y)

y is still 16 (not automatically y = 3**2)

We would have to execute y = x**2 again for y to be 3**2

y = x**2

print(x)

print(y)

The variable we are assigning has to
be the ONLY thing on the left
of the = sign

4 = x # Error
3*x = 4 # Error
x = 4/3
print(x)

Python Objects and Variable Naming

All of the “things” in Python are objects

Python objects all have:

▪ id More on object ids when we get to lists

▪ value We can try to see this with print(x)

▪ type We can see this with type(x)

Variable naming

Think of a variable name as a gift tag attached to an object

Python keeps track of variable names to allow us to use that object later

id: 103100
value: 5
type: int

Object

Variable name

x

Variable Assignment
variable_name = expression

Variable name must be the ONLY thing on the LEFT of the =

Everything to the RIGHT of the = will be evaluated before the name is assigned

x = 3

Python code

x

Variable name

value: 3

Object

Variable Reassignment
variable_name = expression

Python evaluates the right-hand-side to create a single object and then
assigns the variable name tag to that object

Assigning a Variable to a Variable
another_variable_name = variable_name

Multiple variables can point to the same object

For example, after running the following two lines, score and total_score will both be 10

score

Variable name

value: 10

Object

score = 10

totalScore = score

totalScore

Variable name

Variables

Variable names often temporarily
point to the same object and are
later changed to point to
something else

Poll 9 (Unused)
Which of the are valid variable names in Python

Select all that apply

A. val = 4

B. 4val = 4

C. val4 = 4

D. my4val = 4

E. four = 4

F. value? = 4

G. my value = 4

H. my_value = 4

I. my-value = 4

J. myValue = 4

Arithmetic assignment operators

Operator Shortcut Long(cut)

Addition x += 5 x = x + 5

Subtraction x -= 5 x = x - 5

Multiplication x *= 5 x = x * 5

Division x /= 5 x = x / 5

Power (Exponent) x **= 5 x = x**5

Modulo “Mod”
(remainder)

x %= 5 x = x % 5

“Div”
(integer division)

x //= 5 x = x // 5

Functions

Functions
def function_name(parameter):

body_including_return_statements

def myFunctionName(parameter1, parameter2, parameter3):

 # Do something here

 return 42

argument1 = 3

argument2 = 9

argument3 = 27

x = myFunctionName(argument1, argument2, argument3)

Poll 10 (Unused)
Which code is better? def distance(x1, y1, x2, y2):

return ((x1-x2)**2 + (y1-y2)**2)**0.5

def distance(x1, y1, x2, y2):
 xDiff = x1 - x2
 yDiff = y1 - y2

 xDiffSquared = xDiff**2
 yDiffSquared = yDiff**2

 sumOfSquares = xDiffSquared + yDiffSquared

 result = sumOfSquares**0.5
 return result

A)

B)

Poll 11 (Unused)
This code just started executing in pythontutor.com,
to which will the red arrow move to next?

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

https://pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20%20%20print%28x%29%0A%20%20%20%20%0A%20%20%20%20return%207*x%0A%20%20%20%20%0Adef%20g%28y%29%3A%0A%20%20%20%20x%20%3D%202*f%28y%29%0A%20%20%20%20%0A%20%20%20%20return%20x%0A%20%20%20%20%0Aprint%28f%28g%283%29%29%29&cumulative=true&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Types

Types
Types we are working with so far

int, float, str, bool, NoneType (and type)

print(type(3))
print(type(3.0))
print(type("3"))
print(type(True))
print(type(None))
print(type(int))

<class 'int'>
<class 'float'>
<class 'str'>
<class 'bool'>
<class 'NoneType'>
<class 'type'>

OutputCode

Types

type(value) vs isinstance(value, type)

s = 'abc'
print(type(s) == str)
print(isinstance(s, str))
print(isinstance(s, int))

True
True
False

Output
Code

Types
Why do we care?

Types affect semantics

(i.e., depending on the type of
objects involved, an expression
may do different things)

x = 4
y = 3
z = x*y
print(f'{x}*{y} = {z}')
print(f'The type of z is {type(z)}.')

4*3 = 12
The type of z is <class 'int'>.

x = 4
y = '3'
z = x*y
print(f'{x}*{y} = {z}')
print(f'The type of z is {type(z)}.')

4*3 = 3333
The type of z is <class 'str'>.x = 4.0

y = '3'
z = x*y
print(f'{x}*{y} = {z}')
print(f'The type of z is {type(z)}.')

Traceback (most recent call last):
 File "g:\My Drive\112\workspace\week1\lec\variables.py", line 41, in <module>
 z = x*y
TypeError: can't multiply sequence by non-int of type 'float'

Types Conversions
We can convert between types when necessary

n = int('12')
print(type(n))
print(5*n)

<class 'int'>
60

Output

responseStr = input('How many pears to you want to buy? ')
responseInt = int(responseStr)

pricePerPear = 1.5
totalPrice = responseInt * pricePerPear

print(f'That will cost ${totalPrice}.')

Example with input() function

Comparison operators

Operators Summary
Arithmetic

▪ +, -, *, /, **, //, %, - (unary), + (unary)

Comparison

▪ <, <=, >=, >, ==, !=

Assignment

▪ +=, -=, *=, /=, //=, **=, %=

Logical

▪ and, or, not

Note: not covering the bitwise operators (for now at least)

<<, >>, &, |, ^, ~, &=, |=, ^=, <<=, >>=

Operators with Boolean values
Comparison

▪ <, <=, >=, >, ==, !=, is

▪ e.g., x <= y

▪ Results in Boolean value

Logical

▪ and, or, not

▪ Intended to compare two Boolean values (or negate one Boolean
value in the case of not)

Poll 12 (Unused)
What will this print?

print(0.3 == 0.1 + 0.1 + 0.1)

A. True

B. False

C. I don’t know

Issues with floats
Equality

x = 0.1 + 0.1 + 0.1

y = 0.3

x == y # Doesn’t work well with floats

▪ Use cmu_cpcs_utils: almostEqual(x, y)

Rounding

round(x) # Doesn’t work as you might expect

▪ Use cmu_cpcs_utils : rounded(x)

Poll 13

Which of these won’t crash (i.e., produce a DivByZeroError)?

Select all that apply

A. print(1/0)

B. print(True or 1/0)

C. print(True and 1/0)

D. print(1/0 or True)

E. print(1/0 and False)

F. print(False or 1/0)

G. print(False and 1/0)

H. None of the above

Conditionals

Conditional statements

if boolean_expression:

body
if boolean_expression:

bodyA
else:

bodyB

if boolean_expressionA:
bodyA

elif boolean_expressionB:
bodyB

else:
bodyC

if boolean_expressionA:
bodyA

elif boolean_expressionB:
bodyB

elif boolean_expressionC:
bodyC

else:
bodyD

Nested Conditional Statements

if boolean_expression:

if boolean_expression:
bodyA

else:
bodyB

if boolean_expression:
body

Serial if statements vs. if elif elif…

if boolean_expressionA:

bodyA
elif boolean_expressionB:

bodyB
elif boolean_expressionC:

bodyC
elif boolean_expressionD:

bodyD

if boolean_expressionA:
bodyA

if boolean_expressionB:
bodyB

if boolean_expressionC:
bodyC

if boolean_expressionD:
bodyD

▪ Potentially, all bodies execute
▪ All four Boolean expressions

will definitely be checked

▪ At most one body executes
▪ Could be more efficient

	Slide 1: As you walk in
	Slide 2: www.cs.cmu.edu/~112/gallery.html
	Slide 3: www.cs.cmu.edu/~112/gallery.html
	Slide 4: 15-112 Lecture 2 Basic Programming Constructs
	Slide 5: Tuesday Logistics
	Slide 6: [Practice] Poll 1
	Slide 7: Course Team
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Course Team
	Slide 18: Course Team
	Slide 19: [Practice] Poll 2
	Slide 20: [Practice] Poll 2 Take 2
	Slide 21: Course Team
	Slide 22: Course Information
	Slide 23: Announcements
	Slide 24: Announcements
	Slide 25: Weekly Rhythm
	Slide 26: Course Resources
	Slide 27: Lecture Logistics
	Slide 28: Lecture Logistics
	Slide 29: Thursday Logistics
	Slide 30: Thursday Announcements
	Slide 31: Thursday Announcements
	Slide 32: Weekly Rhythm
	Slide 33: Lecture Logistics
	Slide 34: Tips!
	Slide 35: Getting Started with Python
	Slide 36: Hello World!
	Slide 37: Running Python
	Slide 38: Python files/editor vs Python interpreter
	Slide 39: Python files/editor vs Python interpreter
	Slide 40: Running Python
	Slide 41: Running Python
	Slide 42: Running Python
	Slide 43: Printing
	Slide 44: Printing
	Slide 45: Printing Multiple Things
	Slide 46: Printing with f-strings (formatted strings)
	Slide 47: The print function
	Slide 48: Operators and expressions
	Slide 49: Operators Summary
	Slide 50: Arithmetic Operators
	Slide 51: Arithmetic operators
	Slide 52: Expressions
	Slide 53: Order of operations
	Slide 54: Order of operations
	Slide 55: Poll 3
	Slide 56: Poll 4
	Slide 57: Errors
	Slide 58: Natural Language
	Slide 59: Errors
	Slide 60: Poll 5 (Unused)
	Slide 61: Errors
	Slide 62: Strings and Comments
	Slide 63: Poll 6 (Unused)
	Slide 64: Poll 6 (Unused)
	Slide 65: Strings
	Slide 66: Comments Summary
	Slide 67: Comments
	Slide 68: Comments
	Slide 69: Comments
	Slide 70: Poll 7 (Unused)
	Slide 71: Poll 7 (Unused)
	Slide 72: Variables
	Slide 73: Poll 8
	Slide 74: Variables Summary
	Slide 75: Python Objects and Variable Naming
	Slide 76: Variable Assignment
	Slide 77: Variable Reassignment
	Slide 78: Assigning a Variable to a Variable
	Slide 79: Variables
	Slide 80: Poll 9 (Unused)
	Slide 81: Arithmetic assignment operators
	Slide 82: Functions
	Slide 83: Functions
	Slide 84: Poll 10 (Unused)
	Slide 85: Poll 11 (Unused)
	Slide 86: Types
	Slide 87: Types
	Slide 88: Types
	Slide 89: Types
	Slide 90: Types Conversions
	Slide 91: Comparison operators
	Slide 92: Operators Summary
	Slide 93: Operators with Boolean values
	Slide 94: Poll 12 (Unused)
	Slide 95: Issues with floats
	Slide 96: Poll 13
	Slide 97: Conditionals
	Slide 98: Conditional statements
	Slide 99: Nested Conditional Statements
	Slide 100: Serial if statements vs. if elif elif…

