As you walk in

1) Introduce your self to people around you

2) Log into piazza.com (we’ll use it for polls in class)
" Any device is fine

" On aphone, the browser tends to work better than
the app for polls

WWWw.cs.cmu.edu/~112/gallery.htm]

A 15-112 SPRING23

Nl TERM PROJECT LIGHTNING ROuwD VioeD

http://www.cs.cmu.edu/~112/gallery.html

WWWw.cs.cmu.edu/~112/gallery.htm]

CMU 15-112, Fall 2023

Fundamentals of Programming and Computer Science
Carnegie Mellon University

ox - bl

Click here for the Term Project Gallery!

http://www.cs.cmu.edu/~112/gallery.html

15-112
Lecture 2

Basic Programming
Constructs

Instructor: Pat Virtue

Tuesday Logistics

[Practice] Poll 1

Are you hew to CMU?

Course Team

https://www.cs.cmu.edu/~112/staff.html

https://www.cs.cmu.edu/~112/staff.html

Instructors

Mikeaylr Pat Virtue

mdtaylor pvirtue

Head Teaching Assistants

Liv
esands oduvanic lckim

Teaching Assistants

Andrea Andrew Anna
arwang ayoun2 acyu annashi

Ariel Arohee | Audrey

ychiu3 abhoja ahasson

Teaching Assistants

Christina

ctavlara daphneh

Brontosaurus

Emily "~ Ethan Gleb

emilyjia ethankwo gryabtse

Teaching Assistants

lsaac James
iIsaackap changyaw

Jerry

zhuoranh

Jieun Jose Kat
jileunlim jcestero kstudent

Teaching Assistants

!

% 3

Kyle Lakshmi " Laure ~ Maddie

kKylechen ladiga Isands mrburrou

Marcus Margaret
maerahm malenius mche mrosner

Teaching Assistants

Mia Monica Orelia Peter
shengzhk gimow opi pkhoudar

Prina
phdoshi

Riley

rkrzywda

Pterodactyl

Teaching Assistants

Sam | Shruti

rongyuan samuelch sihyunl shrutisr

N

Suanna
suannaz

Sonya Sophia

skarnata sophiaho

Stegosaurus

Teaching Assistants

Timothy Wen Hui

tcarullo wleng

T-rex

Course Team

Course administrative assistant

Marcie!

Course Team

Students!

[Practice] Poll 2

What college are you in?
A) BXA

B) CFA

C) CIT

D) DC

E) MCS

F) SCS

G) TSB

H) MIS/CMU/Other

[Practice] Poll 2 Take 2

What college is a person sitting next to you in?
A) BXA

B) CFA

C) CIT

D) DC

E) MCS

F) SCS

G) TSB

H) Other

Course Team

Students!

Course Information
Website: https://www.cs.cmu.edu/~112

Communication: https://piazza.com m

If piazza doesn’t work:

E-mail: pvirtue@andrew.cmu.edu, mdtaylor@andrew.cmu.edu

https://www.cs.cmu.edu/~112
https://piazza.com/
mailto:pvirtue@andrew.cmu.edu
mailto:mdtaylor@andrew.cmu.edu

Announcements

Recitation

Wednesday & Friday
= Both days required

= Attend your assighed section
= Friday: GHC 5% Floor Clusters

A nnouncements Quizzes / Homeworks / Practice

112-student-contract (due Wed 30-Aug, 11:59pm)

Assignments: hw1 (due Sat 2-Sep at 8pm)
pre-reading2 (due Mon 4-Sept at 8pm)
https://www.cs.cmu.edu/~112/schedule.html

112 student contract HW1 (due Sat. 2-Sep, 8pm)
= Due Tomorrow 8/30, 11:59 pm

HW 1 From the syllabus: Homework assignments will be primarily completed c
and free response exercises requiring writing code, which are all generall
unlimited tries to automatically check solutions in CS Academy. The lowes

= Due Saturday 9/2, 8 pm :

Homeworks are entirely solo unless the assignment very explicitly allows
' ' E faculty. To get h

In CS Academy, complete problems below.

Wee k 2 Pre-read | ng CheCpri nt For each section, we list the required problems. The point values they are yutograded corre
k, and be sure tk

= Released by Thursday Total points: 20 S n orger to rece

(Note: 18 points are visible now. and 2 will be added Friday) rtial credit for aut

= Due Mon 9/3, 8 pm

= Unit 1: Basic Programming Constructs
o 1.2 8 Code Tracing Exercise: _
» Code Tracing #1 (1) bl "stars” in exerc

https://www.cs.cmu.edu/~112/schedule.html

https://www.cs.cmu.edu/~112/schedule.html

We e k | y R h yt h I I l Week Dates Event | Topics Quizzes / Homeworks / Practice
Week Mon28-Aug Getling Started 112-student-contract (due Wed 30-Aug, 11:59pm)
#1 to Check out the TP Gallery! hw1 (due Sat 2-Sep at 8pm)
Fri 1-Sep Data, Expressions, and Variables pre-reading2 (due Mon 4-Sept at 8pm)
Functions
Conditionals
Week Mon 4-Sep Mon 4-Sep: Labor Day (No Classes) quiz1 (on Tue 5-Sep)
#2 to Loops hw2 (due Sat 9-Sep at 8pm)
Fri 8-Sep Style pre-reading3 (due Mon 11-Sep at 8pm)
Debugging
Week Mon 11-Sep Mon 11-Sept: Semester Course Add Deadline quiz2 (on Tue 12-Sep)
#3 to Strings hw3 (due Sat 16-Sep at 8pm)
Fri 15-Sep Intro to 112 Graphics pre-reading4 (due Mon 18-Sept at 8pm)
112 Style Guide
Fri 15-Sep: Deadline to transfer to 15-110

Week 1

Week 2

Week 3

https://www.cs.cmu.edu/~112/schedule.html

Course Resources

Use 112 resources wisely!

Office Hours
and Course
Resources

15-112 can be an intense courss, but it becomeas much more mansgeakbls if you use the course resources well. These
resources include:

Course Notes:
= The course notes (On the CMU CS5 Academy webpage, linked from the schadule) are full of useful information and

examples that can help you approach the assignments! When you don't understand a concept, try reading {or re-
reading) the notes and watching the associated videos first.
= WWe may occasionally link additional notes from the course website. You must read these unless they are marked as

optional.

Large-Group Sessions:

Session Time Location Recorded
Qwiz prep session Tentstive: Sun, 4pm-Spm In-p=rson TBD Yes

Qwiz solution session Wed, Bpm-Bpm Remote, Zoom Links ACH]
Exploratory session May vary Will b2 announced on Piazza Na

= |n general, these sessions are either in-person or fully remote (five via Zoom), but not both. If sessions are recorded
(see table sbove), the recording will be available after the ses=ion, though there may be 3 delsy in its release. If you
wish to attend but are unable to, we recommend that you ask any questions you have on Pizzza or in OH.

= |f at any point we offer 3 homework sclution session, you may nof turn in an assignment after attending/watching
amy part of its solufion session, even with an extension or grace day. Doing so will b= considered an academic
integrity wiolation.

Instructor Open Office Hours:
Timas and locations are subjact to change. See Piazza for any chanpges.

Day Time Location Instructor
Tue 11:30am-1:30pm GHC 4128 Mike

Thu 11:30am-1:30pm GHC 4124 Mike

Wed 2:30prn-4:30pm GHC 8001 Pat

Fri B:00am-11:00am GHC 8001 Pat

= [uring these open OH, you can ask guestions about anything, or pust listen in and maybe pick up some neat stores.
These are open OH, so they are not private. For speecific homework and debugping help, please attend your TA's
study sezsions and/or use Piazza and OH instead so that we can include sveryons in the discussion. We expect these
will be fun and colisborative and will halp us all get to know each other

TA Office Hours:
Times and locations are subject to change. See Piazza for any changes.

Lecture Logistics

Polls

One participation point for *each™* take

Correctness of answer doesn’t count

Profs really do use this as realtime feedback on your understanding
Don’t stress

Tech issues
" One-time issue: no problem, you just need >= 80%
= Persistent issue: let us know so we can find a solution

Used for educational technique call Peer Instruction (more on this later

Lecture Logistics

Notes

CS Academy notes

" Required reading (and viewing)

Pat’s Slides

= Additional resource. Helpful for lecture notetaking and review
" Preview version posted before lecture (on website Schedule)
= |nked versions posted later (on website Schedule)

Taking notes

Devices in lecture

Thursday Logistics

Thursday Announcements

Recitation
Friday
= Required
= GHC 5% Floor Clusters (see link to GHC 5 video on syllabus)

Th u rSd ay An n O u n Ce m e ntS Quizzes [Homeworks [Practice

112-student-contract (due Wed 30-Aug, 11:59pm)

Assign ments . hw1 (due Sat 2-Sep at 8pm)
] pre-reading? (2.1-2.2.5, 2.3 due Mon 4-Sept at 8pm)
https://www.cs.cmu.edu/~112/schedule.html

112 student contract HW1 (due Sat. 2-Sep, 8pm)
= Due YESTERDAY 8/30, 11:59 pm

HW 1 From the syllabus: Homework assignments will be primarily completed c
and free response exercises requiring writing code, which are all generall
unlimited tries to automatically check solutions in CS Academy. The lowes

= Due Saturday 9/2, 8 pm :

Homeworks are entirely solo unless the assignment very explicitly allows
' ' E faculty. To get h

In CS Academy, complete problems below.

Wee k 2 Pre-read | ng CheCpri nt For each section, we list the required problems. The point values they are yutograded corre
k, and be sure tk

= Released by Thursday Total points: 20 S n orger to rece

(Note: 18 points are visible now. and 2 will be added Friday) rtial credit for aut

= Due Mon 9/3, 8 pm

= Unit 1: Basic Programming Constructs
o 1.2 8 Code Tracing Exercise: _
» Code Tracing #1 (1) bl "stars” in exerc

https://www.cs.cmu.edu/~112/schedule.html

https://www.cs.cmu.edu/~112/schedule.html

We e k | y R hyt h M https://www.cs.cmu.edu/~112/syllabus.html

Support (see syllabus and watch Piazza)
= OH
= Practice Quiz

= (Quiz Prep Session

HW due

Week 2 Rec
Quiz prep Pre-reading sz in Lec HW due

Lec Rec
Week 3 Quiz prep Pre-reading Quizin Lec Lec Rec HW due

https://www.cs.cmu.edu/~112/schedule.html
https://www.cs.cmu.edu/~112/syllabus.html

Lecture Logistics

Polls

= Polls this week don’t count. Just practicing Piazza.
" Don’t stress

" Tech issues
" One-time issue: no problem, you just need >= 80%

m Persistent issue: let us know so we can find a solution

Tips!

Tips for editing code

Run code without clicking Run button

= Ctrl/Cmd + Enter pde Run

Comment or uyncomment block of code

1. Select multiple lines together
2. Ctrl/Cmd +/

Indent or unindent block of code

1. Select multiple lines together

2. Indent: Ctrl/Cmd + Tab
Unindent: Ctrl/Cmd + Shift + Tab

Getting Started with Python

Hello World!

Classic start to new tech

print("Hello World!")

But where can we run this?

Running Python
CS Academy

1 print{'Hello, world! ')

o Hide

= Edit code boxes in notes I

" Exercises

= Sandbox!

Python file /editor

Python interpreter

Back to course Sandbox Resources Docs + Colors & My
Printing, Comments, and Types 1 _2.1 P rinti ng,
Printing

15-112
(Based on CS3 Beta) F23

Sandbox Resources Docs + Colors @

= hello.py Stop ‘ CPCS Mode Run

| e O
1

rint('Howdy, folks')

My Exercises

Howdy, folks
>>>

Pyvthon files/editor vs Python interpreter

Python files and editor Python interpreter
Write and save code Quickly test code and explore
E heIIo.py Stop . CPCS Mode Run Come buy some lemonade
$7$7%7

(o] [coeroor | (@ o) IS

Selling some lemonade

print('Come buy some lemonade')

price = '§7'
num = 3
total = price*num

OO O U WK =

print(total)

Pyvthon files/editor vs Python interpreter

Python files and editor Python interpreter

= Write and save code " Runs each line when you hit enter
= Need to explicitly run code = Auto prints resulting object

= Quickly test code and explore

Selling some lemonade

E heuopy Stop . CPCS Mode Run Come buy some lemonade
$7%7%7
miczmioEm]

>>> type(price)

1
2
3 print('Come buy some lemonade') <class 'str'=>
4 >>> price*2
5 price = '§7' 1747
6 num = 3)
7 total = pricexnum »>> price*10
8 '7TSTSTSTSTSTSTSTIST
3 print(total) 555 T3
21

>>> price = 7
>>> price#3
21

>>> ||

Running Python

Pythontutor

= Help *see* how Python works

Learn Python, JavaScript, C, C++, and Java

This tool helps you learn Python, JavaScript, C, C++, and Java programming by visualizing code execution.
You can use it to debug your homework assignments and as a supplement to online coding tutorials.

Start coding now in Python, JavaScript, C, C++, and Java

Over 15 million people in more than 180 countries have used Python Tutor to visualize over 200
million pieces of code. It is the most widely-used program visualization tool for computing education.

You can also embed these visualizations into any webpage. Here's an example showing recursion in Python:

Python 3.6 Frames Objects
def listSum(numbers): Global frame function
if not numbers: listSum(numbers)
listSum
return @
. myList tuple tuple tuple
else: 0 1 0 1 0 1
(f, rest) = numbers 1 ez 2 ezt 3 | None
- return f + listSum(rest) listsum
numbers
mylList = (1, (2, (3, None))) fl1
total = listSum(myList) e

Edit this code

Running Python

Pythontutor
= Help *see* how Python works

= Helpful to learn how to write
out work for code tracing

Recommended setting
(bottom-left)

Visualize Execution “aEHﬂifyDu use

show all frames (Python) *-*| | inline primitiv

hide exited frames [default]
show all frames (Python)

Python 3.6

known limitations

def f(x):
print({x)

return 7*x

def g(y):
x = 2%F(y)

return x

print(f(g(3)))

Edit this code

Print output {drag lower nght corner to resize)

3
42

294

Frames Objects
Global frams function

—

.F
i .///F_ (x)
g l'-"_—"xifurd:i-:n"
gly)

Running Python

(more details later in course)

Terminal (a.k.a. command line) = python = Python interpreter

(Code) Editor myFile.py -2 Terminal: python myFile.py

IDE (Integrated development environment)
= Editor connected with terminal/interpreter

= VS Code (more details later in course)

Printing

Printing

We can print a few different types of things in Python:

= Text (which we call a "string")
print('Hello World!”’)
Hello World!

= Numbers (which we'll separate into integers and floating point numbers)
print(123)
print(12.3)

= Expressions (which evaluate to a value before we print them)
print(12+3)
15

Printing Multiple Things
Call the print function with multiple arguments separated by commas
(An "argument” is a value that we pass to a function)

print('12+3:"', 12+3)
12+3 = 15

This will print them separated by spaces (not commas)
print('Thingl', 'Thing2’)
Thingl Thing?2

Printing with f-strings (formatted strings)

By putting the letter f right before a string, you can then
place variable names in {squiggly braces} to print their values, like so:
X = 42
y = 99
print(f'Did you know that {x} + {y} is {x+y}?’)
Did you know that 42 + 99 is 141>

Since the introduction of f-strings in Python, this has become a popular
way to print combinations of text and values.

The print function

print is a function. The print function will send text to the console
output.

Like in math, Python functions return values, and we can assign those
values to variables, e.g.y = abs(-7)

But, some functions, like print, just return the special Python value None
y = print('Hello World!”’)
print(f'The value of y is {y}.")
Hello World!
The value of y is None.

Operators and expressions

Operators Summary

Arithmetic
.-+, *) /1 **) /// %I —(Unary), +(Unary)

Comparison

"< <=, >= > == I=
Assignment

"4z, = ts, e] R, %e
Logical

= and, or, not

Note: not covering the bitwise operators (for now at least)
<<I >>I &I |I AI NI &=I |=I A=I <<=I >>=

Arithmetic Operators

orint(6 + 2)
orint(6 - 2)
orint(6 * 2)
orint(6 / 2)

(00)

12

3.0
>>>

Arithmetic operators

opersor e b

Addition 345 8
Subtraction 3-5 -2
Multiplication 3*5 15

Division 3/5 0.6

Power (Exponent) 3**5 243
Negation -3 -3
osuo e 5w z

“Div”

(integer division) >//3 1

Expressions

Expression in Python are just segments of code that evaluate to a value
(or more specifically an object)

For arithmetic expressions, we need to pay attention to the order of
operations.

Paratheses

= (Can change affect the order of operations, just like in math

= (Can help clarify the order of operations, even when not necessary
" |ngeneral, don’t add unnecessary paraentheses unless for clarity

Order of operations

PEMDAS
https://www.youtube.com/watch?v=2zeDWFhYv3E

https://www.youtube.com/watch?v=ZzeDWFhYv3E

Order of operations

PEMDAS
https://www.youtube.com/watch?v=Z2zeDWFhYv3E

B=2~22+{2X 4}
B+2-2"+8

Tip

Be a robot!

https://www.youtube.com/watch?v=ZzeDWFhYv3E

Poll 3

What does this print?
print(2**3*%*2)

A) 7
B) 64
C) 512

D) Error

Debugging tip!
Expressions are things in Python that evaluate
to a value

1) Save expressions (of all sizes) to variables
2) Use print(expr) to confirm values and
order of operations

Poll 4

How many expressions are there in:
a-a// b*hb
A) 1
B) 2
C) 3
D) 4
E) 5
F) Other

G) | have noidea

Errors

Natural Language

Which is correct?

A) Letss eat Grandma
B) Letss eat, Grandma
C) Lets eat Grandma
D) Lets eat, Grandma
E) Let’s eat Grandma

F) Let’s eat, Grandma

Lessons learned

Sensitive to small things
= Like spelling, grammar, usage
= Different kinds of error

Different from language to language

Be patient while you learn
= With yourselves
= With each other

Commas save lives

Don’t consume your relatives

Errors

Syntax error
print("100") # Never prints
1?0
print("200") # Never prints

Runtime error
print("100") # Prints!
1/ 0
print("200") # Never prints

Logical error
print(f"100:, {x}") # Prints!
if x % 2 == 1:
print(f"{x} is even") # Prints?
print("200") # Prints!

Debugging tip!

= Use print functions to help
learn where runtime errors
are happening

Debugging tip!

= Use print functions to see if
branches of code are being
entered

Poll 5 (Unused)

What happens when we run the following line?
X = 3(2+7)

A) x takes on the value 27
B) Syntax error

C) Runtime error

D) Logical error

E) | have noidea

Errors
Tip

Keep a list of errors that you encounter along with what they might mean

TypeError: 'int' object is not callable
- Hmm, | probably have number, variable, or expression followed by a (

e.g., X = 3(2+7) should be x = 3*(2+7)

NameError: name 'total' is not defined

- Hmm, | probably have variable named total that | never assigned a value
num = 10
mean = total/num

Strings and Comments

Poll 6 (Unused)

Which one does the right thing?
Select all that apply

A) print("Have you read "Pride and Prejudice" by Jane Austen?")

B) print("Have you read 'Pride and Prejudice' by Jane Austen?")

C) print('Have you read 'Pride and Prejudice" by Jane Austen?')

D) print('Have you read "Pride and Prejudice" by Jane Austen?')

Poll 6 (Unused)

Which one does the right thing?
Select all that apply

A) print("Have you read "Pride and Prejudice" by Jane Austen?")

B) print("Have you read 'Pride and Prejudice' by Jane Austen?")

C) print('Have you read 'Pride and Prejudice" by Jane Austen?')

D) print('Have you read "Pride and Prejudice" by Jane Austen?’)

print("Have you read "Pride and Prejudice" by Jane Austen?")
print("Have you read 'Pride and Prejudice' by Jane Austen?")

print('Have you read 'Pride and Prejudice" by Jane Austen?')

print('Have you read "Pride and Prejudice" by Jane Austen?')

Strings
Single or double quote are fine

= Can be useful for quotes withing strings (but alternated correctly)

* Escape characters are needed sometimes (more on this later in the course)
print('Have you read Jane Austen\'s "Pride and Prejudice" recently?')

= There are also triple quotes for multiline strings (actually, often used for
comments)

f-Strings

= Really useful to print a combination of strings and expressions
X = 42
y = 99
print(f'Did you know that {x} + {y} is {x+y}?")

Comments Summary
Notes for humans (really important!)

Comments can go on their own line

i = 0 # Comments can go at the end of a line

def squared(x):

""" This is technically a multiline string
but is often used as a comment

return x**2

print("Hello World!") # This is a comment

Comments # print("What will this line do?")

Comments are for humans

Comments are sections of text that we can write in Python (and most
computer languages) that provide helpful information for humans to
understand the associated code.

In Python, a # symbol (also called a "pound sign" or "hash symbol") begins
a comment and tells Python to ignore all of the contents from the # sign
until the end of the line.

Even though Python ignores the contents of a comment, comments are an
essential part of writing clear code!

Comments

Comment on its own line
X = 7 # Comment after code

Multiline comments can be useful too
when you have more to say
or just want to make your comments easier to read

Comments

Long comments can be written inside triple-quotes.

Either triple-single-quotes or triple-double-quotes
work.

These can save you from writing a # on every line.

(these long quotes are technially strings that are
just ignored by Python.)

Poll 7 (Unused)

N
M

~IemTmMOoOO® P

hich of the following
| be printed?

ect all that apply
ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

print ("ONE")

print("TWO")

print ("THREE")

print ("FOUR")

print("FIVE")

print("SIX") #

print("SEVEN")

print("EIGHT") # print("NINE")

Poll 7 (Unused)

W
M

~TIOmMMmMUO® P

nich of the following
| be printed?

ect all that apply
ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

print ("ONE")

print("TWO")

print (" THREE")

print("FOUR")

print("FIVE")

print("SIX") #

print("SEVEN")

print("EIGHT") # print("NINE")

Variables

Poll 8

Which of the following will result in the variable x being 0.47?

Select all that apply
x=0.4

0.4 =x

x=2/5

2/5 = x

5x =2

2 = 5x

5*x=2

2 = 5%x

None of the above

—TIemMMmMUO® P

Variables Summary L e ey s ehens "

x = 4 # of the = sign

y = X**2 # 4 = x # Error
3*x = 4 # Error

print(x) X = 4/3

print(y) print(x)

Reassign x to 3

X =3

print(x)

print(y)

y is still 16 (not automatically y = 3**2)

We would have to execute y = x**2 again for y to be 3*%*2

y = X**2

print(x)

print(y)

Python Objects and Variable Naming

All of the “things” in Python are objects
Python objects all have:

o id: 103100
= value We can try to see this with print(x) value: 5

type: int

= type We can see this with type(x)
Object

Variable naming Variable name
Think of a variable name as a gift tag attached to an object

Python keeps track of variable names to allow us to use that object later

Variable Assighnment

variable name = expression
Variable name must be the ONLY thing on the LEFT of the =

Everything to the RIGHT of the = will be evaluated before the name is assigned

Python code Python code

X =3+ 2
X = 3

Object

Variable name

Variable Reassignment

variable name = expression

Python evaluates the right-hand-side to create a single object and then
assigns the variable name tag to that object

Python code

X = 3

X = X + 2

Assigning a Variable to a Variable

another variable name = variable name

Multiple variables can point to the same object

For example, after running the following two lines, score and total _score will both be 10

score = 10

totalScore = score

Object
Variable name

value: 10

Variable name

totalScore ¢

Variables

Variable names often temporarily
point to the same object and are
later changed to point to
something else

Python code

score = 10

total _score

score = 20

total score

score

total score + score

Poll 9 (Unused)

Which of the are valid variable names in Python

Select all that apply
val=4

4val =4

vald =4

myd4val =4
four=4

value? =4

my value =4
my_value =4

my-value =4

ST IeMmMMmoOO0® P>

myValue = 4

Arithmetic assignme

Nt operators

Operator Shortcut Long(cut)
Addition X+=5 X=X+5
Subtraction X -= X=x-5
Multiplication X *= X=X*5
Division X /=5 X=Xx/5
Power (Exponent) X **= X = X**5
Modulo. Mod X %= 5 =X %5
(remainder)
IlDiV”
(integer division) x//=5 X=x/15

Functions

Functions

def function name(parameter):
body 1including return statements

def myFunctionName(parameterl, parameter2, parameter3):
Do something here
return 42

argumentl = 3
argument2 = 9
argument3 = 27/
x = myFunctionName(argumentl, argument2, argument3)

Poll 10 (Unused) a)

def distance(x1l, yl, x2, y2):
return ((x1-x2)**2 + (yl-y2)**2)**9.5

Which code is better?

B)

def

distance(x1,
xDiff = x1 -
yDiff = yl1 -

xDiffSquared
yDiffSquared

sumOfSquares

yl, x2, y2):
X2

y2

XDifF**2
yDifFH*2

xDiffSquared + yDiffSquared

result = sumOfSquares**0.5

return result

Poll 11 (Unused)

This code just started executing in pythontutor.com,
to which will the red arrow move to next?

= def f(x):

2.

1nt
3 print(x)
4. return 7*x
5.
6. def gl(y):
7 x = 2%F(y)
8.
0. return x
10.
11. print{f{g(3)))

https://pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20%20%20print%28x%29%0A%20%20%20%20%0A%20%20%20%20return%207*x%0A%20%20%20%20%0Adef%20g%28y%29%3A%0A%20%20%20%20x%20%3D%202*f%28y%29%0A%20%20%20%20%0A%20%20%20%20return%20x%0A%20%20%20%20%0Aprint%28f%28g%283%29%29%29&cumulative=true&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Types

Types

Types we are working with so far

int, float, str, bool, NoneType (and type)

Code

print(type(3))
print(type(3.0))
print(type(”3"))
print(type(True))
print(type(None))
print(type(int))

Output

<class 'int'>
<class 'float'>
<class 'str'>
<class 'bool'>
<class "NoneType'>
<class 'type'>

Types

type(value) vs isinstance(value, type)

Code

s = 'abc’

print(type(s) == str)
print(isinstance(s, str))
print(isinstance(s, int))

Output

True
True
False

Types

Why do we care?
Types affect semantics

(i.e., depending on the type of
objects involved, an expression
may do different things)

X =4

y = 3

z = X*y

print(f'{x}*{y} = {z}")

print(f'The type of z is {type(z)}."')

4*3 = 12

The type of z is <class 'int'>.

X =14

y = '3

z = X*y

print(f'{x}*{y} = {z}")

print(f'The type of z is {type(z)}."')

X = 4.0

y = '3

z = X*y

print(f'{x}*{y} = {z}")

print(f'The type of z is {type(z)}.")

4*%3 = 3333
The type of z is <class 'str'>.

Traceback (most recent call last):

z = X*y

File "g:\My Drive\ll2\workspace\weekl\lec\variables.py", line 41, in <module>

TypeError: can't multiply sequence by non-int of type 'float’

Types Conversions

We can convert between types when necessary

n = int('12") Output
print(type(n)) <class 'int'>
print(5*n) 60

Example with input() function

input('How many pears to you want to buy? ')
int(responseStr)

responseStr
responselnt

pricePerPear = 1.5
totalPrice = responselnt * pricePerPear

print(f'That will cost ${totalPrice}.")

Comparison operators

Operators Summary

Arithmetic
.-+, *) /1 **) /// %I —(Unary), +(Unary)

Comparison

"< <=, >= > == I=
Assignment

"4z, = ts, e] R, %e
Logical

= and, or, not

Note: not covering the bitwise operators (for now at least)
<<I >>I &I |I AI NI &=I |=I A=I <<=I >>=

Operators with Boolean values

Comparison
n < <=, >=, >, ==, I= s
" eg,X<=y
= Results in Boolean value

Logical
= and, or, not

" |ntended to compare two Boolean values (or negate one Boolean
value in the case of not)

Poll 12 (Unused)

What will this print?
print(0.3 == 0.1 + 0.1 + 0.1)

A. True
B. False
C. ldon’t know

Issues with floats

Equality

X =0.1 +0.1 + 0.1

y = 0.3

X == y # Doesn’t work well with floats

= Usecmu _cpcs utils: almostEqual(x, y)

Rounding
round(x) # Doesn’t work as you might expect

"= Use cmu_cpcs_utils : rounded(x)

Poll 13

Which of these won’t crash (i.e., produce a DivByZeroError)?
Select all that apply

. print(1/0)

. print(True or 1/0)

. print(True and 1/0)

. print(1/0 or True)

. print(1/0 and False)

. print(False or 1/0)

. print(False and 1/0)

. None of the above

T & MM m O N W >

Conditionals

Conditional statements

if boolean _expression:
body

if boolean expression:
bodyA

else:
bodyB

if boolean _expressionA:
bodyA

elif boolean expressionB:
bodyB

else:
bodyC

it boolean expressionA:
bodyA

elif boolean expressionB:
bodyB

elif boolean expressionC:
bodyC

else:
bodyD

Nested Conditional Statements

it boolean _expression: it boolean _expression:
if boolean _expression: body
bodyA
else:

bodyB

Serial if statements vs. if elif elif...

if boolean _expressionA: it boolean _expressionA:
bodyA bodyA

if boolean _expressionB: elif boolean expressionB:
bodyB bodyB

if boolean _expressioncC: elif boolean expressionC:
bodyC bodyC

if boolean _expressionD: elif boolean expressionD:
bodyD bodyD

= Potentially, all bodies execute = At most one body executes

= All four Boolean expressions = Could be more efficient

will definitely be checked

	Slide 1: As you walk in
	Slide 2: www.cs.cmu.edu/~112/gallery.html
	Slide 3: www.cs.cmu.edu/~112/gallery.html
	Slide 4: 15-112 Lecture 2 Basic Programming Constructs
	Slide 5: Tuesday Logistics
	Slide 6: [Practice] Poll 1
	Slide 7: Course Team
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Course Team
	Slide 18: Course Team
	Slide 19: [Practice] Poll 2
	Slide 20: [Practice] Poll 2 Take 2
	Slide 21: Course Team
	Slide 22: Course Information
	Slide 23: Announcements
	Slide 24: Announcements
	Slide 25: Weekly Rhythm
	Slide 26: Course Resources
	Slide 27: Lecture Logistics
	Slide 28: Lecture Logistics
	Slide 29: Thursday Logistics
	Slide 30: Thursday Announcements
	Slide 31: Thursday Announcements
	Slide 32: Weekly Rhythm
	Slide 33: Lecture Logistics
	Slide 34: Tips!
	Slide 35: Getting Started with Python
	Slide 36: Hello World!
	Slide 37: Running Python
	Slide 38: Python files/editor vs Python interpreter
	Slide 39: Python files/editor vs Python interpreter
	Slide 40: Running Python
	Slide 41: Running Python
	Slide 42: Running Python
	Slide 43: Printing
	Slide 44: Printing
	Slide 45: Printing Multiple Things
	Slide 46: Printing with f-strings (formatted strings)
	Slide 47: The print function
	Slide 48: Operators and expressions
	Slide 49: Operators Summary
	Slide 50: Arithmetic Operators
	Slide 51: Arithmetic operators
	Slide 52: Expressions
	Slide 53: Order of operations
	Slide 54: Order of operations
	Slide 55: Poll 3
	Slide 56: Poll 4
	Slide 57: Errors
	Slide 58: Natural Language
	Slide 59: Errors
	Slide 60: Poll 5 (Unused)
	Slide 61: Errors
	Slide 62: Strings and Comments
	Slide 63: Poll 6 (Unused)
	Slide 64: Poll 6 (Unused)
	Slide 65: Strings
	Slide 66: Comments Summary
	Slide 67: Comments
	Slide 68: Comments
	Slide 69: Comments
	Slide 70: Poll 7 (Unused)
	Slide 71: Poll 7 (Unused)
	Slide 72: Variables
	Slide 73: Poll 8
	Slide 74: Variables Summary
	Slide 75: Python Objects and Variable Naming
	Slide 76: Variable Assignment
	Slide 77: Variable Reassignment
	Slide 78: Assigning a Variable to a Variable
	Slide 79: Variables
	Slide 80: Poll 9 (Unused)
	Slide 81: Arithmetic assignment operators
	Slide 82: Functions
	Slide 83: Functions
	Slide 84: Poll 10 (Unused)
	Slide 85: Poll 11 (Unused)
	Slide 86: Types
	Slide 87: Types
	Slide 88: Types
	Slide 89: Types
	Slide 90: Types Conversions
	Slide 91: Comparison operators
	Slide 92: Operators Summary
	Slide 93: Operators with Boolean values
	Slide 94: Poll 12 (Unused)
	Slide 95: Issues with floats
	Slide 96: Poll 13
	Slide 97: Conditionals
	Slide 98: Conditional statements
	Slide 99: Nested Conditional Statements
	Slide 100: Serial if statements vs. if elif elif…

