15-112
Lecture 2

Loops

Instructor: Pat Virtue

Tuesday Logistics

As you walk in

Quiz will start at the beginning of lecture

= Have pencil/pen ready

" Don’t use your own scratch paper
= We have some if you need it

= Silence phones

Quiz

Before we start

" Don’t open until we start

= Make sure your name and Andrew ID are on the front
= Read instruction page

"= No questions (unless clarification on English)

Additional info

" 25 min

Announcements
Quiz
Grades

= Likely ready Wednesday
= Superhero TAs!

= Very small impact on final grade
Fix-its!
" More information coming on Piazza

From Syllabus

Quizzes (about 8, incl. TP 10% Lowest quiz grade is dropped, second-lowest is half-weighted.
deliverables)

Announcements

Weekly Rhythm Assignments/Quizzes
" Today, HW?2 released

" Thu, Pre-reading 3 released

= Sat,8pm: HW 2

= Mon, 8 pm: Pre-reading 3

= Next Tue, in-lec: Quiz 2

Thursday Logistics

Announcements
Quiz
= Review quiz results in Gradescope!

= Watch solution session recording if you missed the live zoom session

= Regrade requests
" See Piazza for details

= Fix-its!
= See Piazza for details
Canvas

= Workin progress: we're getting scripts setup to sync Canvas Grades

Announcements

Weekly Rhythm Assignments/Quizzes
= Today, Pre-reading 3 released soon
" Fri: Fix-its due

= Sat,8pm: HW 2

= Mon, 8 pm: Pre-reading 3

= Next Tue, in-lec: Quiz 2

Announcements

Registration deadlines next week

From Schedule on course website

Week Mon 11-Sep Mon 11-Sept: Semester Course Add Deadline
#3 to Strings
Fri 15-Sep Intro to 112 Graphics
112 Style Guide

Fri 15-Sep: Deadline to transfer to 15-110

Loops

Poll 1

What does this code print?
for yGrid in range(-2, 2):

pixel =

print('+', end=" ")

A) |+ +

B) |+ + + +

C)l+ + + + +

D)

-+

+ + + +

+ + + + +

G) | have no idea

Poll 2

What does this code print?
def printPlot(xMin, xMax, yMin, yMax):
for yGrid in range(yMin, yMax+1):
for xGrid in range(xMin, xMax+1):
pixel = "+
print(pixel, end=" ")

print()

printPlot(-3, 3, -2, 2)

A)

+ + + + + + +
+ + + + + + +
+ + + 4+ + + +
+ + + + + + +
+ + + 4+ + + +

+ + 4+ + + +
+ + + + + +
+ + 4+ + + +
+ + 4+ + + +

+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +

+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

E) | have no idea

Poll 3 (unused)

What does this code print?
def printPlot(xMin, xMax, yMin, yMax):
for yGrid in range(yMin, yMax+1):
for xGrid in range(xMin, xMax+1):
if xGrid == 0 and yGrid == 0:
pixel = "+
elif xGrid == 0:
pixel = '|"'
elif yGrid == 0:
pixel = '-'
else:
pixel = '
print(pixel, end=" ")
print()
printPlot(-3, 3, -2, 2)

A)

E) | have no idea

Poll 3 (unused)

What does this code print? A) B) |
def printPlot(xMin, xMax, yMin, yMax): : : : : . |
for yGrid in range(yMin, yMax+1): o oo - - - ¥ - -
for xGrid in range(xMin, xMax+1): - -+ - - |
|
C) - D) -
Co- [+]
|+ S
print() - . E) I have no idea

printPlot(-3, 3, -2, 2)

Poll 4

Which code is better

A) B)
def sumFromMToN(m, n): def sumFromMToN(m, n):
total = 0 total = ©
for x in range(m, n+1): X = m
total += x while X <= n:
return total total += x

X += 1
return total

For Loops vs While Loops
Often, we can write our code using either

How do we choose

For loops are often easier to reason about, especially if were
looping over a known sequence

While loops work well when we don’t know how many loops we
need to do
Easier to make mistakes with while loops
= “Help! | run my code, but it doesn’t do anything!!”
" [nfinite loop!!
Tip: Use ctrl-C to interrupt program execution in the console
Tip: Include some print statements to see the loop in action

While Loops

Pick a number between 0 and 1000 (Unknown number of loops)

guessStr = input("Enter new guess: ")
guess = int(guessStr)

numAttempts = 1

while guess != secret:
if guess > secret:

print("--- Too high!")
else:

print("--- Too low!")
guessStr = input(("Enter new guess: ")
guess = int(guessStr)

numAttempts += 1

print(f"You got it in {numAttemps}! The secret number was {secret}!")

Poll 5 (unused)

How many factors does the numer 16 have?
2

I o6 m mMm O O @ >
0O N O 0 B W

16

Poll 6 (unused)

What is the n-th prime number when n=3?

~IomMmoOoO® P

—
[N
[N

Pattern: Find the n-th thing
Find the n-th dino

Pattern: Find the n-th thing
Need
= A way to get to the next guess

= A way to check it: isThing(guess)

Sketch
Loop from guess to guess until you’ve found n (well actually n+1) things

if isThing(guess):

numFound +=1

Pattern: Find the n-th thing
Find the n-th prime

= NEED: isPrime(number)

123456789 10 11 12 13 14 15 16 17

Design: isPrime(n)
Use paper (or equivalent) to design your solutions!

Design: isPrime(n)

Then you can compare your code your paper examples

def isPrime(n):
if n < 2:
return False
for factor in range(2, n):
if n % factor ==
return False
return True

Pattern: Find the n-th thing
Find the n-th prime

= Assume we have isPrime(number)

123456789 10 11 12 13 14 15 16 17

Pattern: Find the n-th thing
Find the n-th prime

= Assume we have isPrime(number)

def nthPrime(n):
numFound = 0
guess = O # First guess - 1
while numFound <= n: # Note: Does one more loop when numFound == n !!
guess += 1 # Next guess
if isPrime(guess):
numFound += 1

return guess

123456789 10 11 12 13 14 15 16 17

Bisection

findZeroWithBisection(f, x0, x1, epsilon)

Loops: Break and Continue

Poll 7

Which of these prints more lines?

A) B) C) Same D) | have no idea
X =0 X =0
while True: while True:
X += 1 X += 1
if x % 10 == 0: if x % 10 ==
break continue
print(x) print(x)
print('Done") print('Done')

Previous Poll 2
What does this code print?

def printPlot(xMin, xMax, yMin, yMax):

:#F pixel = "+

print(pixel, end="

—~ print()

i

printPlot(-3, 3, -2, 2)

for yGrid in range(yMin, yMax+1):

")

for xGrid in range(xMin, xMax+1):

A)

C)

ranag (3 9) A

g—

Pange (2 3)

)

+ + + + + + +
+ + + + + + +
+ + + 4+ + + +
+ + + + + + +
+ + + 4+ + + +

+ + 4+ + + +
+ + + + + +
+ + 4+ + + +
+ + 4+ + + +

—\\\ ';7
(;;ﬂ) + 4+ + + + 4
++ 4+ + + 4+ o+
Tlh b 4+ + + +
;7 ++ 4+ + + 4+ o+
++ 4+ + + 4+ o+
A
D)+ + + + + +
é/’+ + 4+ + + +
+ 4+ + + + 4
+ 4+ + + + 4

E) | have no idea

Previous Poll 3

What does this code print?
def printPlot(xMin, xMax, yMin, yMax):
for yGrid in range(yMin, yMax+1):
for xGrid in range(xMin, xMax+1):
if xGrid == 0 and yGrid == 0:
pixel = "+
elif xGrid == 0:
pixel = '|"'
elif yGrid == 0:

pixel = '-

else:
pixel = ".'
print(pixel, end=" ")
print()

printPlot(-3, 3, -2, 2)

A)

E) | have no idea

Previous Poll 3

What does this code print? A) B) |
def printPlot(xMin, xMax, yMin, yMax): : : : : . |
for yGrid in range(yMin, yMax+1): o oo - - - ¥ - -
for xGrid in range(xMin, xMax+1): - -+ - - |
|
C) - D) -
Co- [+]
|+ S
print() - . E) I have no idea

printPlot(-3, 3, -2, 2)

Poll 8

def printPlot(xMin, xMax, yMin, yMax):

Original for printPlot(-3, 3, -2, 2)

for yGrid in range(yMin, yMax+1):
if yGrid == O:
break R
for xGrid in range(xMin, xMax+1):
if xGrid == 0 and yGrid ==
pixel = "+
elif xGrid == o: The added code will result in...?
pixel = '|" Select ALL that apply
elif yGrid == 0: A) Fewer rows
pixel = '- B) Fewer columns
else: C) A blank row in the center
pixel = "." D) A blank column in the center
print(pixel, end=" ") E) None of the above

print()

Poll 8

Original for printPlot(-3, 3, -2, 2)
def printPlot(xMin, xMax, yMin, yMax):

for yGrid in range(yMin, yMax+1):
if yGrid == O:
break

printRow(xMin, xMax, yGrid)

The added code will result in...?
Select ALL that apply

A) Fewer rows

B) Fewer columns

C) A blank row in the center

D) A blank column in the center
E) None of the above

Poll 9

def printPlot(xMin, xMax, yMin, yMax):

Original for printPlot(-3, 3, -2, 2)

for yGrid in range(yMin, yMax+1):
if yGrid == O:
continue T
for xGrid in range(xMin, xMax+1):
if xGrid == 0 and yGrid ==
pixel = "+
elif xGrid == o: The added code will result in...?
pixel = '|" Select ALL that apply
elif yGrid == 0: A) Fewer rows
pixel = '- B) Fewer columns
else: C) A blank row in the center
pixel = "." D) A blank column in the center
print(pixel, end=" ") E) None of the above

print()

Poll 9

Original for printPlot(-3, 3, -2, 2)
def printPlot(xMin, xMax, yMin, yMax):

for yGrid in range(yMin, yMax+1):
if yGrid == O:

continue

printRow(xMin, xMax, yGrid)

The added code will result in...?
Select ALL that apply

A) Fewer rows

B) Fewer columns

C) A blank row in the center

D) A blank column in the center
E) None of the above

Break and Continue in Nested Loops
Break and continue will only affect their immediate surrounding loop

for tensDigit in range(1,6): 11 12 13 14 15
for onesDigit in range(1, 6): 21 22 23 24 25
value = 10xtensDigit + onesDigit 31 32 33 34 35
print(value, end=' ") 41 42 43 44 45
print() 51 52 53 54 55
for tensDigit in range(1,6): 11 12
for onesDigit in range(1, 6): 21 22
if onesDigit == 3: 31 32
break 41 42
value = 10xtensDigit + onesDigit 51 52
print(value, end=' ‘)
print()

Break and Continue in Nested Loops
Break and continue will only affect their immediate surrounding loop

for tensDigit in range(1,6): 11 12 13 14 15
for onesDigit in range(1, 6): 21 22 23 24 25
value = 10%tensDigit + onesDigit 31 32 33 34 35
print(value, end=' ") 41 42 43 44 45
print() 51 52 53 54 55
for tensDigit in range(1,6): 11 12 14 15
for onesDigit in range(1, 6): 21 22 24 25
if onesDigit == 3: 31 32 34 35
continue 41 42 44 45
value = 10xtensDigit + onesDigit 51 52 54 55
print(value, end=' ‘)
print()

Break and Continue in Nested Loops

for tensDigit in range(1,6):
for onesDigit in range(1, 6):
value = 10xtensDigit + onesDigit
print(value, end="' ")
print()

11
21
31
41
51

12
22
32
42
52

13
23
33
43
53

14
24
34
44
54

15
25
35
45
55

for tensDigit in range(1,6):
for onesDigit in range(1, 6):
if onesDigit == 3:
break
value = 10%tensDigit + onesDigit
print(value, end="' ")
print()

11
21
31
41
51

12
22
32
42
52

for tensDigit in range(1,6):
for onesDigit in range(1, 6):
if onesDigit == 3:
continue
value = 10xtensDigit + onesDigit
print(value, end="' ")
print()

11
21
31
41
51

12
22
32
42
52

14
24
34
44
54

15
25
35
45
55

Break in Nested Loops Original for printPlot(-3, 3, -2, 2)

def printPlot(xMin, xMax, yMin, yMax):

for yGrid in range(yMin, yMax+1):

for xGrid in range(xMin, xMax+1):

L. - - - -
if yGrid == 0O:

break
if xGrid == 0 and yGrid ==

. plxe% - The added code will result in...?

elif xGrid == 0©:

vixel = |’ Select ALL that apply
elif yGrid == 0: A) Fewer rows

pixel = '-' B) Fewer columns
else: C) A blank row in the center

pixel = '.° D) A blank column in the center
print(pixel, end=" ") E) None of the above

print()

Break in Nested Loops

def printPlot(xMin, xMax, yMin, yMax):

for yGrid in range(yMin, yMax+1):

for xGrid in range(xMin, xMax+1):

printPixel (xGrid, yGrid)

if yGrid == O:

break

if xGrid == 0 and yGrid == 0O:
pixel = '+
elif xGrid == 0:

pixel = '|

elif yGrid == 0:

pixel = '-

else:

pixel =
print(pixel, end=" ")

print()

Original for printPlot(-3, 3, -2, 2)

The added code will result in...?
Select ALL that apply

A) Fewer rows

B) Fewer columns

C) A blank row in the center

D) A blank column in the center
E) None of the above

Break in Nested Loops Original for printPlot(-3, 3, -2, 2)

def printPlot(xMin, xMax, yMin, yMax):
o , yGrid: -2
for yGrid in range(yMin, yMax+1): .
for xGrid i (xMin, xMax+1) yorid: -1
XMax :

or % ri %n range(xMin, yGrid:

if yGrid == O: yGrid:

break yGrid:

printPixel(xGrid, yGrid)

print() The added code will result in...?

Select ALL that apply
A) Fewer rows
B) Fewer columns
A blank row in the center
A blank column in the center
E) None of the above

Design: Patterns and Top-Down Design

Pattern: Find the n-th thing
Find the n-th prime

= More than one way to write it

def nthPrime(n): def nthPrime(n):

numFound = © numFound = ©
guess = O # First guess - 1 guess = 1 # First guess
while numFound <= n: while True:

guess += 1 # Next guess if isPrime(guess):

if isPrime(guess): numFound += 1

numFound += 1 if numFound == n+1:
return guess return guess
guess += 1 # Next guess

Poll 10 (unused)

Which version is better?

A) B)
def nthPrime(n): def nthPrime(n):
numFound = © numFound = ©
guess = O # First guess - 1 guess = 1 # First guess
while numFound <= n: while True:
guess += 1 # Next guess if isPrime(guess):
if isPrime(guess): numFound += 1
numFound += 1 if numFound == n+1:
return guess return guess
guess += 1 # Next guess

Top-down Design
Start coding with a birds-eye-view of the task

As you code, assume you have completed versions of lower level tasks

Example: Find nthDooDad(n):
def nthDooDad(n):

numFound = 0

guess = 1 # First guess
while True:

if 22?2

Top-down Design
Start coding with a birds-eye-view of the task

As you code, assume you have completed versions of lower level tasks

Example: Find nthDooDad(n):
def nthDooDad(n):

numFound = 0

guess = 1 # First guess
while True:
if isDooDad(guess)
numFound += 1
if numFound == n+1:

return guess

guess += 1 # Next guess

n-th Pattern
Need

= A way to get to the next guess

= A way to check it: isThing(guess)
Sketch

Loop from guess to guess until you’ve found n (well actually n+1) things
if isThing(guess):

numFound +=1

SERNAA & &l

Best Pattern
Find the “best” thing in some collection

What “best” means depends on the application.

Example: Find the oldest TA

Best Pattern
Need

= Ability to loop through all items

= Ability to compare value of items
Sketch

Initialize bestValue (often some extreme or impossible value, like None)

Loop through all items:

if item value is “better” than bestValue
Update bestValue to value of current item
Note: (Sometimes you also need to keep track of the item itself

in cases where the item and the value of the item differ)

Top-down Design
Example: Best Pattern + Top-down Design

nearestNeighbor(newPoint, trainingPoints):

Feature 2

25 1

20 -

15 1

10 -

Rabbit
Beaver
Opossum
Squirrel

O Cat

Y x_new example

10 15 20 25
Feature 1

30

Feature 2

Top-down Design

Example: Best Pattern + Top-down Design

nearestNeighbor(newPoint, trainingPoints):

Rabbit
Beaver
Opossum
Squirrel
O Cat ,_,»)-“
201 Y x_new example

25 1

15 1

10 1

def getNumPoints(points):
pass

pass

pass

def getPointFromPoints(points, 1i):

def distance(pointl, point2):

10 15 20 25 30
Feature 1

def nearestNeighbor(newPoint, trainingPoints):
bestDistance = math.inf
bestPoint = None

numPoints = getNumPoints(trainingPoints)
for 1 in range(numPoints):

trainingPoint = getPoint(trainingPoints, i)

dist = distance(newPoint, trainingPoint)
if dist <= bestDistance:
bestDistance = dist

bestPoint = trainingPoint

return bestPoint

Style

A)
PO” 11 (UﬂUSed) def distance(x1, yl1l, x2, y2):

Which code is better? return ((x1-x2)™*2 + (y1-y2)**2)**6.5

B)

def distance(x1, yl1, x2, y2):
xDiff = x1 - x2
yDiff = yl - y2

xDiffSquared = xDiff**2
yDiffSquared = yDiff**2

sumOfSquares = xDiffSquared + yDiffSquared

result = sumOfSquares**0.5
return result

Algorithm Design: Faster isPrime

Algorithm Design: isPrime(n)
This version is actually *really* slow

def isPrime(n):
if n < 2:
return False

for factor in range(2, n):
if n % factor == 0:
return False

return True

isPrime(17)

AR 20 20 20 20 20 20 2 2 2 2 2N A B /
2 567 89

1 3 4 10 11 12 13 14 15 16 17/

Algorithm Design: isPrime(n)

We can do better

def isPrime(n):
if n < 2:
return False

for factor in range(2, n):

if n % factor ==
return False

return True

isPrime(17)

v vy

def fasterIsPrime(n):
if n < 2:

return False

for factor in range(2, int(n**0.5)+1):
if n % factor ==
return False

return True

fasterIsPrime(17)

2 3456 7 389 1011 12 13 14 15 16

Algorithm Design: isPrime(n)

Timing with the time library

import time

startTime = time.time()
result = isPrime(7368791)
endTime = time.time()

elapsedTime = endTime - startTime
print(f'isPrime: {elapsedTime} sec')

import time

startTime = time.time()
result = fasterIsPrime(7368791)
endTime = time.time()

elapsedTime = endTime - startTime
print(f’fasterIsPrime: {elapsedTime} sec')

isPrime: 1.1695044040679932 sec

fasterIsPrime: 0.001009225845336914 sec

Over 1000x faster for isPrime(7368791)

