
15-112
Lecture 2

Strings

Instructor: Pat Virtue

Tuesday Logistics

As you walk in
Quiz will start at the beginning of lecture
§ Have pencil/pen ready
§ Silence phones

Quiz
Before we start
§ Don’t open until we start
§ Make sure your name and Andrew ID are on the front
§ Read instruction page
§ No questions (unless clarification on English)

Additional info
§ 25 min

Announcements
Quiz
§ Grades
§ Regrade requests, same as last week
§ Fix-its, same as last week
Canvas
§ We’re still organizing and getting basics setup
§ Participation is next to setup

§ Participation will start to include recitation attendance
Course
§ It will keep ramping up
§ Come get help

Announcements
Weekly Rhythm Assignments/Quizzes
§ Today, HW3 released
§ Thu, Pre-reading 4 released
§ Sat, 8 pm: HW 4
§ Mon, 8 pm: Pre-reading 4
§ Next Tue, in-lec: Quiz 3

Thursday Logistics

Announcements
Quiz
§ Review quiz results in Gradescope
§ Watch solution session recording if you missed the live zoom session
§ Regrade requests

§ See Piazza for details
§ Fix-its!

§ See Piazza for details
Canvas
§ Work in progress: we’re getting scripts setup to sync Canvas Grades
§ TODO: Participation: Lecture Polls + Recitation Attendance

Announcements
Weekly Rhythm Assignments/Quizzes
§ Today, Pre-reading 4 released soon
§ Fri: Fix-its due
§ Sat, 8 pm: HW 3
§ Mon, 8 pm: Pre-reading 4
§ Next Tue, in-lec: Quiz 3

Strings

Post-quiz Exercise
What is the correct response to the following?

pet = "manatee"
s = pet[:4]*2

Then Google search: s

Poll 1
What does this print?
A. A
B. B
C. C
D. D
E. E
F. F
G. G
H. None of the above

def ct(s):
 n = ord(s)
 n += 2
 return chr(n)

print(ct('C'))

Ascii, Unicode, and Emojis!
(and a tiny bit of hexadecimal)

Viewing invisible characters
repr(s)

Poll 2
What does this code print?
A. 6
B. 7
C. 8
D. 9
E. 10
F. 11
G. (Python crashes)
H. I have no idea

1234567890
print(len('\noodles\\'))

Esacape characters
Popular escape characters
\n New line
\t Tab
\\ \

String length, indexing, and slicing
012345678

s = 'brown cat'
len(s)

s[2]

s[-2]

s[1:7:3]

Poll 3 (unused)
Which is better?

A)
Given string s
for i in range(len(s)):
 # Do stuff

B)
Given string s
for c in s:
 # Do stuff

Poll 4
What does this code print?
A. abcde
B. edcba
C. bcdea
D. bcda
E. ba
F. ab
G. (Python crashes)
H. I have no idea

def ct(s):
 return s[1:-1] + s[0]

print(ct('abcde’))

String indexing and slicing
Indexing
c = s[index] # c will be character at position index

Valid indices
§ Positive: 0 to len(s)-1 (but not len(s))
§ Negative: -len(s) to -1

Slicing
s[start:end:step]

Similar to range arguments
§ Doesn’t include end
§ There are default values if any of these are left blank
§ (Gets a bit goofy with a negative step)

Reference slide

Poll 5
What does this function do?
A. Return a copy of s
B. Return the reverse of s
C. Return string that is only the last

character of s
D. Return string that is only the first

character of s
E. Return None
F. (Python crashes)
G. I have no idea

def mystery(s):
 return s[::-1]

Pattern: Building up a result
Building up a string

Sketch:
§ Start with empty string: result = ''
§ Loop

§ adding to string as needed: result += nextChar

String operations
§ sNew = s1 + s2
§ sNew += s3

Example: reverseString(s)

Pattern: Building up a result
Building up a string

Sketch:
§ Start with empty string: result = ''
§ Loop

§ adding to string as needed: result += nextChar

Example:

String operations
§ sNew = s1 + s2
§ sNew += s3

def reverseString(s):
 newString = ''
 for c in s:
 newString = c + newString

 return newString

Poll 6
What does this print?
A. dog
B. DOG
C. mog
D. MOG
E. mOG
F. (Python crashes)
G. I have no idea

s = 'dog'
s.upper()
s[0] = 'm'
print(s)

Functions vs Methods
String functions take in a string (return something useful)
Like a all the functions that we’ve been working with
 chr(s)
 ord(s)
 len(s)
 repr(s)

Methods on the other hand have a different syntax:

String methods
Some convenient methods that return Boolean values

 s isalnum isalpha isdigit islower isspace isupper
 ABCD True True False False False True
 ABcd True True False False False False
 abcd True True False True False False
 ab12 True False False True False False
 1234 True False True False False False
 False False False False True False
 AB?! False False False False False True

Reference slide

Strings are immutable
Once a string object is created, we can’t change it.
This is what we call “immutable”

Actually, everything we have used so far is immutable: ints, floats, etc.
(they just aren’t very interesting objects)

It might see as though you can change strings but we can’t. It always ends
up as some new string object.

This will be much more relevant once we get to our first mutable object
type, lists!

Poll 7
What does this print?
A. lil
B. nasx
C. lilnasx
D. (Python crashes)
E. I have no idea

s = 'lil'
t = s
s += 'nasx'

print(t)

Strings and aliases
Two variables are “aliases” are when they reference the exact same object.
This happens when you assign a variable to another variable:
s = 'abc'
t = s

s and t are aliases referencing the same to the same exact string object
'abc’

But…strings are immutable. We can’t possibly change s without making a
new string.

s += 'def' # Assigns s to a new string 'abcdef’
The string t is referencing remains 'abc'

Strings and aliases
Two variables are “aliases” are
when they reference the exact
same object.
This happens when you assign
a variable to another variable

But…strings are immutable.
We can’t possibly change s
without making a new string.

Pattern: Building up a result
Building up a string

Sketch:
§ Start with empty string: result = ''
§ Loop

§ adding to string as needed: result += nextChar

Example:

String operations
§ sNew = s1 + s2
§ sNew += s3

def reverseString(s):
 newString = ''
 for c in s:
 newString = c + newString

 return newString

Pattern: Keeping track of state in a loop
Use a variable to keep track of the state you are in during a loop

def collapseWhitespace(s):
 result = ''
 isWhite = False
 for c in s:
 if c.isspace():
 if not isWhite:
 result += ' '
 isWhite = True
 else:
 isWhite = False
 result += c

 return result

Sketch:
§ Start with initial state:

currentState = False

§ Loop
§ Check for changes and adjust

state variable

Example:
Collapse consecutive whitespace
down to a single space

Design Challenge
def toCamelCase(s):
 pass

assert(toCamelCase('goodToGo') == 'goodToGo')

assert(toCamelCase(‘Hi Walter') == 'hiWalter')

assert(toCamelCase('add_all_the_numbers') == 'addAllTheNumbers')

Style: variable/function names
§ Camel case: myNewVariable
§ Snake case: my_new_variable

Design Challenge
def toCamelCase(s):
 pass

assert(toCamelCase('goodToGo') == 'goodToGo')
assert(toCamelCase('goodtogo') == 'goodtogo') # Oh well

assert(toCamelCase('Hi Walter') == 'hiWalter')

assert(toCamelCase('add_all_the_numbers') == 'addAllTheNumbers')

Style: variable/function names
§ Camel case: myNewVariable
§ Snake case: my_new_variable

Poll 8 (unused)
Which of the following would you want to use in your toCamelCase(s)
implementation?
Select ALL that apply
A. For loop over the characters in the string
B. isalnum
C. isalpha
D. isdigit
E. islower
F. isspace
G. isupper
H. None of the above

Design Challenge
def printFunctionInfo(code):
 pass

code = """\
def f(x):
 return 4*x

def ct(x, y, z):
 return f(x) + f(y+1) + f(x+2)

print(ct(2))
"""

print(code)
#print(repr(code))

printFunctions(code)

Function f takes parameters:
 x
Function ct takes parameters:
 x
 y
 z

Output

Design Challenge
def printFunctionInfo(code):
 for line in code.splitlines():
 name, params = parseLine(line)

 if name is not None:
 print(f'Function {name} takes parameters:’)
 for param in params.split(',’):
 param = param.strip()
 print(f"\t{param}")

def parseLine(line):
'''
Extract the function name and parameters given a line of code
Returns two strings:
-- Function name (no def, no parentheses)
-- parameters (one string that includes any commas; may be empty string)
Returns None, None if no function defined on the line
'''

Function f takes parameters:
 x
Function ct takes parameters:
 x
 y
 z

Output

Top-down design

Design Challenge
def parseLine(line):
 ''' Function comment ... '''

line = line.strip()
if line[4:] != "def ":
 return None

remainingLine = line[4:]

name = ""
params = ""
foundOpenParenthesis = False
for c in remainingLine:
 if c == '(‘:
 foundOpenParenthesis = True
 continue

if c == ')’:
 break

if not foundOpenParenthesis:
 name += c
else:
 params += c

return name, params

Pattern: Building up a result

Design Challenge
def parseLine(line):
 ''' Function comment ... '''

line = line.strip()
if line[4:] != "def ":
 return None

remainingLine = line[4:]

name = ""
params = ""
foundOpenParenthesis = False
for c in remainingLine:
 if c == '(‘:
 foundOpenParenthesis = True
 continue

if c == ')’:
 break

if not foundOpenParenthesis:
 name += c
else:
 params += c

return name, params

Pattern: State in a loop

