
15-112
Lecture 2

Lists

Instructor: Pat Virtue

Tuesday Logistics

As you walk in

Quiz will start at the beginning of lecture

▪ Have pencil/pen ready

▪ Silence phones

Quiz

Before we start

▪ Don’t open until we start

▪ Make sure your name and Andrew ID are on the front

▪ Read instruction page

▪ No questions (unless clarification on English)

Additional info

▪ 25 min

Announcements
Logistics changes related to Midterm 1 next week

▪ hw5 (due Sat 30-Sep at 8pm)

▪ Optional quiz5 (ungraded, due never)

▪ No pre-reading6

▪ Review for midterm (in-lecture next Tuesday)

▪ Thu 5-Oct: Midterm 1 (in-lecture next Thursday)

Stay tuned to Piazza for more details

Thursday Logistics

Announcements
Logistics changes related to Midterm 1 next week

▪ hw5 (due Sat 30-Sep at 8pm)

▪ Optional quiz5 (ungraded, due never)

▪ No pre-reading6

▪ Review for midterm (in-lecture next Tuesday)

▪ Thu 5-Oct: Midterm 1 (in-lecture next Thursday)

Stay tuned to Piazza for more details

Lists

Python Objects and Variable Naming

All of the “things” in Python are objects

Python objects all have:

▪ id More on object ids when we get to lists

▪ value We can try to see this with print(x)

▪ type We can see this with type(x)

Variable naming

Think of a variable name as a gift tag attached to an object

Python keeps track of variable names to allow us to use that object later

id: 103100
value: 5
type: int

Object

Variable name

x

Running Python

Pythontutor

▪ Help *see* how Python works

Running Python

Pythontutor

▪ Help *see* how Python works

▪ Helpful to learn how to write
out work for code tracing

Optional settings
(bottom-left, bottom-center)

Strings vs Lists
Lists are mutable!

With strings, we always have to create a new string to modify an existing string

With lists, we can modify an existing list object

Strings vs Lists
Lists are mutable!

With strings, we always have to create a new string to modify an existing string

With lists, we can modify an existing list object

Reminder: Strings and aliases

Two variables are “aliases” are when they reference the exact same object

This happens when you assign a variable to another variable:

s = 'abc'

t = s

s and t are aliases referencing the same to the same exact string object
'abc’

But…strings are immutable. We can’t possibly change s without making a
new string.

s += 'def' # Assigns s to a new string 'abcdef’

The string t is referencing remains 'abc'

Aliasing
Two variables are “aliases” are when they reference the exact same object

row0 = ['-','-','-']
row1 = row0
row2 = row0
row3 = row0
row4 = row0

row4[1] = 'B'

print(row0)
print(row1)
print(row2)
print(row3)
print(row4)

Aliasing
Two variables are “aliases” are when they reference the exact same object

row0 = ['-','-','-']
row1 = ['-','-','-']
row2 = ['-','-','-']
row3 = ['-','-','-']
row4 = ['-','-','-']

row4[1] = 'B'

print(row0)
print(row1)
print(row2)
print(row3)
print(row4)

Poll 1

What does this print?
import copy

A = [10, 20, 30]

B = A

C = copy.copy(A)

A[0] = 44

B[1] = 55

C[2] = 66

print('A:', A)

print('B:', B)

print('C:', C)

I. A: [44, 20, 30]

 B: [10, 55, 30]

 C: [10, 20, 66]

II. A: [44, 55, 30]

 B: [44, 55, 30]

 C: [10, 20, 66]

III. A: [44, 20, 66]

 B: [10, 55, 30]

 C: [44, 20, 66]

IV. A: [44, 55, 66]

 B: [44, 55, 66]

 C: [44, 55, 66]

Poll 2

Which is the correct
visualization?
import copy

A = [10, 20, 30]

B = A

C = copy.copy(A)

I. II.

III. IV.

List indexing and slicing
A = [10, 20, 30, 40, 50]

x = 99

A[1] = x

A = [10, 20, 30, 40, 50]

x = A[1]

A = [10, 20, 30, 40, 50]

X = A[1:3]

A = [10, 20, 30, 40, 50]

X = [88, 99]

A[1:3] = X

Reference slide

Adding elements
A = [10, 20, 30, 40, 50]

B = A

A.append(99)

A = [10, 20, 30, 40, 50]

B = A

A += [99]

Reference slide

Adding elements
A = [10, 20, 30, 40, 50]

B = A

A.append(99)

A = [10, 20, 30, 40, 50]

B = A

A += [99]

CAUTION

A = [10, 20, 30, 40, 50]

B = A

A.append([99])

INCONSISTENT with +=

A = [10, 20, 30, 40, 50]

B = A

A = A + [99]

A = [10, 20, 30, 40, 50]
A += 99
TypeError: 'int' object is not iterable

Reference slide

Poll 3

What are the resulting A, B, and C?
import copy

A = [10, 20, 30]

B = A

C = copy.copy(A)

A[0] = 44

B[1] = 55

C[2] = 66

A = A + [77]

I. A: [44, 20, 30, 77]

 B: [10, 55, 30]

 C: [10, 20, 66]

II. A: [44, 55, 30, 77]

 B: [44, 55, 30]

 C: [10, 20, 66]

III. A: [44, 20, 66, 77]

 B: [10, 55, 30]

 C: [44, 20, 66]

IV. A: [44, 55, 30, 77]

 B: [44, 55, 30, 77]

 C: [10, 20, 66]

Poll 4

What does this print?

def f(L):

 L.remove(3)

A = [2, 3, 4, 5]

print(f(A))

I. [2, 3, 4, 5]

II. [2, 4, 5]

III. [2, 3, 5]

IV. []

V. None

Poll 5

What does this print?

def f(L):

 L.remove(3)

A = [2, 3, 4, 5]

f(A)

print(A)

I. [2, 3, 4, 5]

II. [2, 4, 5]

III. [2, 3, 5]

IV. []

V. None

Reference slide

Caution: Mutating in Loops
Guided Exercise: removeEvens

Broken version:

2 4 6 7

L = [2, 4, 6, 7]

for i in range(len(L)):

 if L[i] % 2 == 0:

 L.pop(i)

Caution: Mutating in Loops
Guided Exercise: removeEvens

Broken version:

2 4 6 7

L = [2, 4, 6, 7]

i = 0
L.pop(i)

4 6 7

i = 1
L.pop(i)

4 7

i = 2
L[i] % 2

Error: Index out of range

for i in range(len(L)):

 if L[i] % 2 == 0:

 L.pop(i)

i = 0

while i < len(L):

 if L[i] % 2 == 0:

 L.pop(i)

 else:

 i += 1

Corrected version:

Poll 6

Which is best?

I.

def doubleValues(L):

 for i in range(len(L)):

 L[i] *= 2

II.
def doubleValues(L):

 for i in range(len(L)):

 L[i] *= 2

 return L

III.

def doubleValues(L):

 A = []

 for item in L:

 A.append(item*2)

 return A

IV.
def doubleValues(L):

 A = []

 for item in L:

 A.append(item*2)

Pattern: Building up a result
Building up a string

Sketch:

▪ Start with empty string: result = ''

▪ Loop

▪ adding to string as needed: result += nextChar

Example: def reverseString(s):
 newString = ''
 for c in s:
 newString = c + newString

 return newString

Pattern: Building up a result
Building up a string

Sketch:

▪ Start with empty string: result = []

▪ Loop

▪ adding to string as needed: result.append(nextVal)

Example: def doubleListValues(L):
 newList = []
 for val in L:
 newList.append(2*val)

 return newList

Poll 7 (unused)
What does this print?

I. <class ‘int'>

II. <class ‘str’>

III. <class ‘list’>

IV. <class 'tuple’>

V. (<class ‘str’>, <class ‘int’>)

VI. ERROR

VII. I have no idea

def f():

 return 'a', 3

x = f()

print(type(x))

Tuples and List Comprehensions

Tuples
Like lists but immutable

FAIL: myTuple[0] = 99

Simulate multiple return values

def sumProd(x, y):

 return x+y, x*y

Multiple assignment

cx, cy = width/2, height/2

Single element tuples

myTuple = (99,)

Reference slide

One line swapping!
y, x = x, y

List Comprehension
Sample for loop

newList = []

for variable in sequence:

 newList.append(expression)

Python shorthand

newList = [expression for variable in sequence]

Fashionable python

Image credit: https://www.nytimes.com/2020/09/21/style/exotic-skins-fashion-covid.html

List Comprehension
Sample for loop (now with a filter)

newList = []

for variable in sequence:

 if condition:

 newList.append(expression)

Python shorthand (now with a filter)

newList = [expression for variable in sequence if condition]

Image credit: https://www.nytimes.com/2020/09/21/style/exotic-skins-fashion-covid.html

Reference slide

2D Lists

We can put lists inside elements of a list

row0 = ['a','b','c','d','e']
row1 = ['f','g','h','i','j']
row2 = ['k','l','m','n','o']

row2[3] = 'Z'

We can put lists inside elements of a list

row0 = ['a','b','c','d','e']
row1 = ['f','g','h','i','j']
row2 = ['k','l','m','n','o']

table = [row0, row1, row2]
table[2][3] = 'Z'

Traversing 2D Lists
Printing rectangular list

Create rectangular 2D list
table = [[900, 901, 902],

[910, 911, 912],
[920, 921, 922]]

numRows = len(table)
numCols = len(table[0]) # Assume all rows have the same width

for i in range(numRows):
 for j in range(numCols):
 value = table[i][j]
 print(value, end=',') # Print on same row (with commas)
 print() # New line after row

Traversing 2D Lists
Printing non-rectangular (irregular) (ragged) list

Create non-rectangular 2D list
table = [[900, 901],

[910, 911, 912, 913, 914],
[920, 921, 922]]

numRows = len(table)

for i in range(numRows):
 numCols = len(table[i])

 for j in range(numCols):
 value = table[i][j]
 print(value, end=',')
 print() # New line after row

Simpler if we don't need indices
for row in table:
 for value in row:
 print(value, end=',')
 print() # New line after row

Creating 2D Lists

Creating 2D Lists
If you know the values, you can just type out the list of lists

data = [[900, 901, 902], [910, 911, 912], [920, 921, 922]]

Same as above but code is easier to read
data = [[900, 901, 902],

[910, 911, 912],
[920, 921, 922]]

Aliasing
Two variables are “aliases” are when they reference the exact same object

blankRow = ['-','-','-']
L = []
L.append(blankRow)
L.append(blankRow)
L.append(blankRow)
L.append(blankRow)
L.append(blankRow)

L[4][1] = 'B'

Aliasing
Two variables are “aliases” are when they reference the exact same object

L = []
L.append(['-','-','-'])
L.append(['-','-','-'])
L.append(['-','-','-'])
L.append(['-','-','-'])
L.append(['-','-','-'])

L[4][1] = 'B'

Poll 8

Which of these is the best
code to create a blank word
search board?

numRows, numCols = 4, 3

board = [[' ']*numCols]*numRows

cell = [' ']
row = cell*numCols
rowIn2DList = [row]
board = rowIn2DList*numRows

board = []
for r in range(numRows):
 board.append([' ']*numCols)

board = []
for r in range(numRows):
 cell = [' ']
 row = cell*numCols
 board.append(row)

A.

B.

C.

D.

Creating 2D Lists
Options to create a "blank" 2D list

Fashionable Python: more concise with list comprehension

Be carefull!

board = [[0]*numCols]*numRows # Aliased!!

grid = []
for i in range(numRows):
 grid.append([0]*numCols)

grid = [[0]*numCols for i in range(numRows)]

grid = []
for i in range(numRows):
 row = []
 for j in range(numCols):
 row.append(0)
 grid.append(row)

Clearly loop through each location

Word Search Case Study

Word Search

Word Search Top-down Design

Word Search Top-down Design
def wordSearch(grid, word)

 For each starting position

 If start letter doesn’t match

 BAIL

 For each direction

 For each letter in word

 If out of bounds

 BAIL

 If letter doesn’t match

 BAIL

Word Search Top-down Design
def wordSearch(grid, word)

 For each starting position

 If start letter doesn’t match

 return None

 searchFromPos()

def searchFromPos():

 For each direction

 searchFromPosInDir()

def searchFromPosInDir()

 For each letter in word

 if outOfBounds()

 return None

 if letter doesn’t match grid

 return None

Word Search Top-down Design
def wordSearch(grid, word):

 gridHeight = len(grid)

 gridWidth = len(grid[0])

 for i in range(gridHeight):

 for j in range(gridWidth):

 if grid[i][j] != word[0]:

 continue

 result = searchFromPos(grid, word, i, j)

 if result is not None:

 return result

 return None

Word Search Top-down Design
def searchFromPos(grid, word, i, j):

 for dir in getDirections():

 result = searchFromPosInDir(grid, word, i, j, dir)

 if result is not None:

 return result

 return None

def getDirections():

 directions = []

 for i in (-1, 0, 1):

 for j in (-1, 0, 1):

 if i != 0 or j != 0:

 directions.append((i, j))

 return directions

(-1,-1) (-1,0) (-1,1)

(0,-1) (0,0) (0,1)

(1,-1) (1,0) (1,1)

Word Search Top-down Design
def searchFromPosInDir(grid, word, iStart, jStart, dir):

 gridHeight, gridWidth = len(grid), len(grid[0])

 i, j = iStart, jStart

 # Can skip first position

 i += dir[0]

 j += dir[1]

 for letter in word[1:]:

 if not checkBounds(i, j, gridWidth, gridHeight):

 return None

 if grid[i][j] != letter:

 return None

 i += dir[0]

 j += dir[1]

 return (word, iStart, jStart, dir)

def checkBounds(i, j, width, height):
 return (0 <= i < height) and (0 <= j < width)

(-1,-1) (-1,0) (-1,1)

(0,-1) (0,0) (0,1)

(1,-1) (1,0) (1,1)

	Slide 1: 15-112 Lecture 2 Lists
	Slide 2: Tuesday Logistics
	Slide 3: As you walk in
	Slide 4: Quiz
	Slide 5: Announcements
	Slide 6: Thursday Logistics
	Slide 7: Announcements
	Slide 8: Lists
	Slide 9: Python Objects and Variable Naming
	Slide 10: Running Python
	Slide 11: Running Python
	Slide 12: Strings vs Lists
	Slide 13: Strings vs Lists
	Slide 14: Reminder: Strings and aliases
	Slide 15: Aliasing
	Slide 16: Aliasing
	Slide 17: Poll 1
	Slide 18: Poll 2
	Slide 20: List indexing and slicing
	Slide 21: Adding elements
	Slide 22: Adding elements
	Slide 23: Poll 3
	Slide 24: Poll 4
	Slide 25: Poll 5
	Slide 26
	Slide 27: Caution: Mutating in Loops
	Slide 28: Caution: Mutating in Loops
	Slide 29: Poll 6
	Slide 30: Pattern: Building up a result
	Slide 31: Pattern: Building up a result
	Slide 32: Poll 7 (unused)
	Slide 33: Tuples and List Comprehensions
	Slide 34: Tuples
	Slide 35: List Comprehension
	Slide 36: List Comprehension
	Slide 37: 2D Lists
	Slide 38: We can put lists inside elements of a list
	Slide 39: We can put lists inside elements of a list
	Slide 40: Traversing 2D Lists
	Slide 41: Traversing 2D Lists
	Slide 42: Creating 2D Lists
	Slide 43: Creating 2D Lists
	Slide 44: Aliasing
	Slide 45: Aliasing
	Slide 46: Poll 8
	Slide 47: Creating 2D Lists
	Slide 48: Word Search Case Study
	Slide 49: Word Search
	Slide 50: Word Search Top-down Design
	Slide 51: Word Search Top-down Design
	Slide 52: Word Search Top-down Design
	Slide 53: Word Search Top-down Design
	Slide 54: Word Search Top-down Design
	Slide 55: Word Search Top-down Design

