

15-112 Lecture 2

Sets, Dictionaries, and Efficiency

Instructor: Pat Virtue

Tuesday Logistics

www.cs.cmu.edu/~112/gallery.html

Announcements

Term Project

- Ideation Meetings
- Special Topic Sessions

Hack112

- Sat-Sun Nov 4-5
- Just for us!

HW8

Little Alchemy!

Poll 1

Would you attend a TP ideation meeting with a TA?

- Definitely yes
- Probably yes
- Probably not
- Definitely not

Thursday Logistics

Warm-up as you walk in

Dancing is optional :-p

https://www.youtube.com/watch?v=LriMvv9qDrk

Announcements

Term Project

Preview

Sets

Debate

Which are better sets or lists?

Lists vs Sets

Property	Lists	Sets
Indexing	V	X
Iterate over	\checkmark	Y
Mutable		V
Mutable elements	\checkmark	\times
Get length	V	
Check contents	N/	
Sort different types	~//	
STURSOFT repeated elements	\sim	\times
Stored in order added	\checkmark	\times

"I feel the need, the need for speed"

-- Top Gun


```
Poll 2 , the following
  Which of may need to visit all N elements in the list data,
  assuming N = len(data)? Select ALL that apply.
  A. for x in data:
print(x)
B. for i in range(len(data)):
        x = data[i]
     print(x)
if x in data:
        print("Found it")
D. x = data[-1]
E. x = max(data)
  F. None of the above
```

Poll 3

```
Which of may need to visit all N elements in the set data,
assuming N = len(data)? Select ALL that apply.
A. for x in data:
      print(x)
B. for i in range(len(data)):
      x = data[i]
      print(x)
C. if x in data:
      print("Found it")
D. X
     = data[-1]
E. x = max(data)
F. None of the above
```

Discussion

Brainstorm: How can I make finding a specific student's exam more efficient?

Set lookup is *way* faster

Hashing

Discussion

Brainstorm: How can I make finding a specific student's exam more efficient?

How do sets work? In-class exercise

Hashtables

Simple example

```
def myHash(s):
    val = 0
    for c in s:
        val += ord(c)
    return val
s = "cat"
numBuckets = 10
```

```
hVal = myHash(s)
bucketIndex = hVal % numBuckets
```

```
print(s, hVal, bucketIndex)
```

```
How do sets work?
```


Dictionaries

Dictionaries

Map keys to values

VOCab.get ('ddd', 0)

Keys are stored like sets

§ a: 73 $\{\}$ \in \exists \exists \exists dict()3 'a' 3 if idd in Vorab safe Key Error $V_{A} = VOCab ['ddd']$

Sets and Dictionaries Example

Vocab

Efficiency

Counting operations

Worksheet

Counting operations

Worksheet

1+2+...+

Counting operations

N is the size of the input data

e.g. the length of an input list

The function f(N) is a measurement or count of resources used based on N

- Often based on computation time needed, but can be related to other resources like space (memory) needed
- Measured in number of operations rather than time
 - Lots of reasons, e.g. easier to compare algorithms despite changes in computer speed
- Small details either ignored or estimated (because of big-O)

Big O

Describes asymptotic behavior of a function Informally (for 15112):

Ignore all lower-order terms and constants

A few examples: • $N^2 - N + 25$ is in $O(N^2)$ $30000N^2 + 2N - 23$ is in $O(N^2)$ $0.000001N^2 + 123456N$ is in $O(N^2)$

• $10N \log_{17}N + 25N - 17$ is in $O(N \log N)$

 $\log_{17} N = \frac{\log_{17} N}{1 + 17}$

f(N) is in O(?)

Common Function Families

Constant: O(1)Logarithmic: $O(\log N)$

Linear:O(N)Loglinear: $O(N \log N)$

Quadratic: $O(N^2)$

Exponential: $O(2^N)$

Previous Poll 2

Which of these needs to visit all N elements in the list data, assuming N = len(data)?

- Select ALL that apply.
- A. for x in data: print(x)
- B. for i in range(len(data)):
 print(x)
- C. if x in data:

print("Found it")

- D. x = data[i]
- E. x = max(data)
- F. None of the above

Previous Poll 3

Which of these needs to visit all N elements in the set data, assuming N = len(data)?

- Select ALL that apply.
- A. for x in data:
- print(x)
 B. for i in range(len(data)):
 print(x)
- C. if x in data:
 - print("Found it")
- D. x = data[i]
- E. x = max(data)
- F. None of the above

 $\mathcal{O}(\mathcal{N})$

Poll 4

Which of these is O(N) for the dictionary d, assuming N = len(d)? Note: all of these are either O(1) or O(N)

(N`

Select ALL that apply.

- A. for key in d:
 print(d[key])
- B. for i in range(len(d)):
 print(d[i])
- C. if key in d:

print("Found it")

- D. x = d[key]
- E. d[key] = x
- F. None of the above

Efficiency of Search and Sort

Example Lame Wordle

Poll 5

I'm thinking of a number between 1 and 64. After each guess, I'll tell you if you're correct or if my number is higher or lower.

\$100 if you win. \$0 if you lose.

How many guesses do you want to buy, \$1 each?

A: 6

B: 7

C: 32

D: 64

Guess a Number: Binary Search

- I'm thinking of a number between 1 and N. After each guess, I'll tell you if you're correct or if my number is higher or lower.
- What is the maximum number of guesses you'll need to play this game?

N	10	100	1,000	10,000	100,000	1,000,000	10,000,000
$\log_2 N$	3.3	6.6	10.0	13.3	16.6	19.9	23.3
$\lfloor \log_2 N \rfloor + 1$	4.0	7.0	11.0	14.0	17.0	20.0	24.0

Linear vs Binary Search Linear search: O(N)Binary search: $O(\log N)$


```
Linear vs Binary Search
```

Linear search: O(N)

N = 40

Binary search: $O(\log N)$

Common Function Families

Constant: O(1)

Logarithmic: $O(\log N)$

Linear: O(N)

Loglinear: $O(N \log N)$

Quadratic: $O(N^2)$

Exponential: $O(2^N)$

```
Complexity Classes
```


Efficiency of Sorting Algorithms

Sorting algorithms

Selection sort: $O(N^2)$

Loop

- Find max in unsorted region
- Swap max with value at the end of the unsorted region
- Shrink unsorted region by 1

Merge sort: $O(N \log N)$

Sorting algorithms

Merge sort: $O(N \log N)$

Merge concept:

Assume you had two piles that were already independently sorted. Could you shuffle them together into one sorted pile in O(N)?