
15-112
Lecture 2

Recursion

Instructor: Pat Virtue

Tuesday Logistics

As you walk in

Quiz will start at the beginning of lecture

▪ Have pencil/pen ready

▪ Silence phones

Quiz

Before we start

▪ Don’t open until we start

▪ Make sure your name and Andrew ID are on the front

▪ Read instruction page

▪ No questions (unless clarification on English)

Additional info

▪ 25 min

Fractals
Mandelbrot set

https://www.youtube.com/watch?v=u1pwtSBTnPU

https://www.youtube.com/watch?v=u1pwtSBTnPU

Announcements
Democracy Day

▪ Tue 11/7 – No class

TP

▪ Ideation meetings

▪ Special topic session

▪ Scaffolded project – Bee project

HW9

▪ VS Code graphics exercise → Turn in on Canvas

Thursday Logistics

Announcements
Quiz 8

Poll 1
What is the big O of the following function, which takes a list of length N?
Note that some parts of the code are intentionally blanked out.

A. O(1)

B. O(2**N)

C. O(N**0.5)

D. O(N*log(N))

E. O(N**2)

F. O(N**3)

G. Need more information

to be sure

def f(L):

 result = []

 for i in range(_______):

 for j in range(_______):

 k = L[i] + L[j] result.append(k)

 return result

Poll 2
Which of the following may require Python to visit all N elements in the
list data, assuming N = len(data)? Select ALL that apply.

A. for x in data:

 print(x)

B. for i in range(len(data)):

 x = data[i]

 print(x)

C. if x in data:

 print(“Found it”)

D. x = data[-1]

E. x = max(data)

F. None of the above

Poll 3
Assume print(s) prints {2, 4, 6, 8, ???} for some set s.

Which of the follow will are possible replacements for ??? for some set?

Select ALL that apply.

A. 1

B. [1]

C. 2

D. 'two'

E. 10

F. {10}

G. Need more information to be sure

Announcements
Next Week

▪ Tue 11/7: No class (Democracy Day)

▪ Thu 11/9: Quiz 9

▪ HW10

TP

▪ Special topic sessions will be posted today

Sun Mon Tue Wed Thu Fri Sat

Week 9 🎃 Recursion HW9 due
Hack112

Week 10 Hack112 No class
Preread10

Quiz 9
OOP Part1

HW10 due

Week 11 No quiz10 Midterm
2

Recursion

Recursion in the Wild

Recursion in the Wild

Recursion in the Wild

Recursion in the Wild

General Recursive Form
def recursiveFunction():

 if (this is the base case):

 do something non-recursive

 else:

 do something recursive

Recursive thinking
Suggestion: start with the recursive case

▪ How can you reduce the problem into smaller problem(s)
that have the same structure as the original?

▪ Assume (magically) that next recursive cases will work

Recursive thinking (and recursive functions)
Count digits??

def countDigits(number):

Recursive thinking (and recursive functions)
Word search??

def wordSearch(board, word):
 (rows, cols) = (len(board), len(board[0]))
 for row in range(rows):
 for col in range(cols):
 result = wordSearchFromCell(board, word, row, col)
 if (result != None):
 return result
 return None

Recursion Examples
▪ Recursive case

▪ Base case

▪ Recursion errors

▪ Call Stack

▪ Visualizing recursion

▪ Debugging recursion

Example: Factorial

Example: Factorial

Some Recursion Issues
Debugging alternatingCase

def alternatingCase(s):

 # assume s is at least of length 1:
 if len(s) == 1:

 return s[0].upper()
 else:
 last = s[-1]
 rest = s[:-1]
 if alternatingCase(rest)[-1].isupper():

 return alternatingCase(rest) + last.lower()
 else:

 return alternatingCase(rest) + last.upper()

Example: Fibonacci

Towers of Hanoi
Goal: Move stack to a different peg

Restrictions

▪ One piece at a time

▪ Can’t put bigger piece on top of smaller

Image (left): https://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg

Reminder General Recursive Form
def recursiveFunction():

 if (this is the base case):

 do something non-recursive

 else:

 do something recursive

Towers of Hanoi
Recursive case

▪ Let’s start with magic!

Towers of Hanoi
Recursive case

▪ Let’s start with magic!

import magic # For now :)

def move5(start, end, temp):

 # Move 5 pieces from start to end

 magic.move4(start, temp, end)

 print(f"Move piece from {start} to {end}")

 magic.move4(temp, end, start)

Towers of Hanoi
Recursive case

▪ Let’s start with magic!

import magic # For now :)

def move(start, end, temp):

 # TODO Base case

 # Move n pieces from start to end

 move(n-1 start, temp, end)

 print(f"Move piece from {start} to {end}")

 move(n-1, temp, end, start)

Revisit Merge Sort
Merge sort: 𝑂(𝑁 log 𝑁)

Merge concept:

Assume you had two piles that were already independently sorted.

Could you shuffle them together into one sorted pile in O(N)?

def mergesort(L):

 if len(L) < 2:

 return L

 else:

 mid = len(L)//2

 left = mergesort(L[:mid])

 right = mergesort(L[mid:])

 return merge(left, right)

print(mergesort([1,5,3,4,2,0]))

Backtracking
Incredibly generic problem-solving algorithm

Backtracking: Word chain
List of words

Return an ordered list of words such that

▪ Last letter of each word is the first letter of the next word

Debug output should matched tree!

CHAIN: [], REMAINING: ['goose', 'dog', 'elk', 'toad']
 |CHAIN: ['goose'], REMAINING: ['dog', 'elk', 'toad']
 | |CHAIN: ['goose', 'elk'], REMAINING: ['dog', 'toad']
 | |Result: False
 |Result: False
 |CHAIN: ['dog'], REMAINING: ['goose', 'elk', 'toad']
 | |CHAIN: ['dog', 'goose'], REMAINING: ['elk', 'toad']
 | | |CHAIN: ['dog', 'goose', 'elk'], REMAINING: ['toad']
 | | |Result: False
 | |Result: False
 |Result: False
 |CHAIN: ['elk'], REMAINING: ['goose', 'dog', 'toad']
 |Result: False

Backtracking: Word chain
solve(chain, words)

1. If no more words

 Return chain as solution!

2. For each valid action

a) Apply action

b) Recurse: result = solve(chain, words)

c) If result is success

 Return result

 Else

 Undo action

3. Return failure

Backtracking: N-Queens Example

Backtracking: N-Queens Example
N-by-N chessboard

Place exactly N queen pieces on the board, such that no queens are in
positions to attack each other

▪ Queens can move any number of spaces:

▪ Horizontally

▪ Vertically

▪ Diagonally

Backtracking: N-Queens Example
solve(board)

1. If all Qs placed

 Return board as solution!

2. For each valid action

a) Apply action

b) Recurse: result = solve(board)

c) If result is success

 Return result

 Else

 Undo action

3. Return failure

Backtracking: N-Queens Example

Backtracking: N-Queens example
Code demo

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#nQueens

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#nQueens

Backtracking: Solving maze example
Start: top-left

Goal: bottom-right

Strategy

▪ Path: Keep ordered list of locations representing the current path

▪ Visited: Avoid revisiting same locations by storing

▪ Try actions in order: N, S, E, W

▪ Recursively solve from next location

Backtracking: Solving maze example
solve(maze, path, visited)

1. If at goal

 Return path as solution!

2. For each valid action

a) Apply action

b) Recurse:

 result = solve(maze, path, visited)

c) If result is success

 Return result

 Else

 Undo action

3. Return failure

Backtracking pattern

solve(maze, path, visited)

1. If at goal

 Return path as solution!

2. For each valid action

a) Apply action

b) Recurse:

 result = solve(maze, path, visited)

c) If result is success

 Return result

 Else

 Undo action

3. Return failure

solve(board)

1. If all Qs placed

 Return board as solution!

2. For each valid action

a) Apply action

b) Recurse:

 result = solve(board)

a) If result is success

 Return result

 Else

 Undo action

3. Return failure

Maze N-Queens

Backtracking: Performance
Map coloring example

Goal: color all states with {red, green, blue}
such that adjacent states have different colors.

Classic example: Australia

Image credit: ai.berkeley.edu, Ketrina Yim

ai.berkeley.edu
http://www.ketrinayim.com/

Backtracking: Performance
Map coloring example

"for each valid action"

But, what are the actions??

Backtracking: Performance
Map coloring example

"for each valid action"

But, what are the actions??

Backtracking: Performance
Map coloring example

"for each valid action"

But, what are the actions??

Fractals!

	Lecture
	Slide 1: 15-112 Lecture 2 Recursion
	Slide 2: Tuesday Logistics
	Slide 3: As you walk in
	Slide 4: Quiz
	Slide 5: Fractals
	Slide 6: Announcements
	Slide 7: Thursday Logistics
	Slide 8: Announcements
	Slide 9: Poll 1
	Slide 10: Poll 2
	Slide 11: Poll 3
	Slide 12: Announcements
	Slide 13: Recursion
	Slide 14: Recursion in the Wild
	Slide 15: Recursion in the Wild
	Slide 16: Recursion in the Wild
	Slide 17: Recursion in the Wild
	Slide 18: General Recursive Form
	Slide 19: Recursive thinking
	Slide 20: Recursive thinking (and recursive functions)
	Slide 21: Recursive thinking (and recursive functions)
	Slide 22: Recursion Examples
	Slide 23: Example: Factorial
	Slide 24: Example: Factorial
	Slide 25: Some Recursion Issues
	Slide 26: Example: Fibonacci
	Slide 27: Towers of Hanoi
	Slide 28: Reminder General Recursive Form
	Slide 29: Towers of Hanoi
	Slide 30: Towers of Hanoi
	Slide 31: Towers of Hanoi
	Slide 32: Revisit Merge Sort
	Slide 33: Backtracking
	Slide 34: Backtracking: Word chain
	Slide 35: Backtracking: Word chain
	Slide 36: Backtracking: N-Queens Example
	Slide 37: Backtracking: N-Queens Example
	Slide 38: Backtracking: N-Queens Example
	Slide 39: Backtracking: N-Queens Example
	Slide 40: Backtracking: N-Queens example
	Slide 41: Backtracking: Solving maze example
	Slide 42: Backtracking: Solving maze example
	Slide 43: Backtracking pattern
	Slide 44: Backtracking: Performance
	Slide 45: Backtracking: Performance
	Slide 46: Backtracking: Performance
	Slide 47: Backtracking: Performance
	Slide 48: Fractals!

