
fullName:________________________ andrewID:_________________ section:___

15-112 S25
Quiz1 version A

Read these instructions carefully before starting:

1. Quiz versions are color-coded. You must have a different version (color)
of this quiz than the students sitting to your left and right.

2. Stop writing and submit the entire quiz when instructed by the proctor.
• Do not unstaple any pages.
• You must submit the entire quiz with all pages intact.

3. Do not discuss the quiz with anyone else until after 5pm.
• This applies to everyone, including students in either lecture.

4. Do not use your own scrap paper.
• You should not need scrap paper, there is plenty of room for you

on the quiz.
• However, if you absolutely must use scrap paper, raise your hand

and we will provide some. Then, you must write your andrew id
clearly on the scrap paper, and hand in the scrap paper with your
paper quiz. We will not grade anything on your scrap paper.

5. You may not ask questions during the quiz.
• The one exception is for English-language clarifications.
• If you are unsure how to interpret a problem, just take your best

guess.
6. Do not use any concepts (including built-in functions) not covered in the

notes through week 1 / unit 1.
• Do not use strings, loops, lists, tuples, dictionaries, sets, or

recursion.
7. Do not hardcode your solutions.

• We may test your code using additional test cases.
• Hardcoding will receive zero points.

8. Assume almostEqual(x, y) and rounded(n) are both supplied for you.
• You must write all other helper functions you wish to use, unless

we specify otherwise.
9. Good luck!

Code Tracing (CT) [20 pts, 5 pts each]
For each CT, indicate what the code prints
Place your answer (and nothing else) in the box below the code.

Note: all the floats that are printed in these CTs have no more than one digit
after the decimal point.

CT1:

def ct1(a, b):
 print(a % b, a % 2 * b)

print(ct1(7, 3))
ct1(3, 7)

CT2:

def ct2(m, n):
 x = m ** n
 x //= n
 x /= m
 return x

print(ct2(2, 5))

CT3:

def ct3(x, y):
 print(x or y, x and y)

ct3(0, 1)
ct3(2, 3)

CT4:

def ct4(x, d):
 if x < 0:
 x **= 2
 else:
 x = int(x)
 d += 1 if x % 2 == 0 else 2
 return f'{x} + {d} = {x+d}'

print(ct4(-3, 3))
print(ct4(4.9, 2.1))

Free Response / FR1: distanceToNearestTenth [30 pts]

Write the function distanceToNearestTenth(n) that takes a possibly-
negative float n, and returns the positive distance from n to the nearest tenth.

For example, if n == 4.08, the nearest tenth to n is 4.10, and the distance
from 4.08 to 4.10 is 0.02, so
 distanceToNearestTenth(4.08) == 0.02. Actually, since these are
floats, we will use almostEqual to check for correctness.

Thus, here are some test cases:
 assert(almostEqual(distanceToNearestTenth(1.1), 0))
 assert(almostEqual(distanceToNearestTenth(4.08), 0.02))
 assert(almostEqual(distanceToNearestTenth(2.71), 0.01))
 assert(almostEqual(distanceToNearestTenth(3.35), 0.05))
 assert(almostEqual(distanceToNearestTenth(-4.08), 0.02))

Remember not to use loops, lists, strings, or anything we have not covered in
the week 1 notes.

Begin your FR1 answer on the next page.

Begin your answer to FR1 here:

Free Response / FR2: isAddish [50 pts]
Background: we will say that a positive integer n is "addish" (a coined term) if
its digitCount is 3*k for some positive integer k, and that n can be split into
3 smaller integers a, b, and c (each with a digitCount of k), such that
a + b == c. These integers should be assigned so that a contains the
leftmost digits, b contains the middle digits, and c contains the rightmost
digits. For example:

• If n is 279, n has 3 digits, which is 3*k when k=1. So, we can split n into 3

k-digit numbers a=2, b=7, and c=9. Because 2 + 7 == 9, we know that
a + b == c, so 279 is addish.

• If n is 972, then a=9, b=7, and c=2. This is not addish because

9 + 7 != 2, so a + b != c.

• If n is 127183 (6 digits), we can split n into a=12, b=71, and c=83, and

12 + 71 == 83, so a + b == c, so 127183 is addish.

• If n is 12324, it has only 5 digits. 5 is not a multiple of 3, so n is not

addish.

With that in mind, write the function isAddish(n) that takes an arbitrary
Python value (perhaps not an int, and if an int, perhaps not positive), and
returns True if n is addish and False otherwise.

Remember not to use loops, lists, strings, or anything we have not covered in
the week 1 notes. You may assume that digitCount(n) is already written for
you.

Here are some test cases for you:
 assert(isAddish(279) == True) # 2 + 7 == 9
 assert(isAddish(972) == False) # 9 + 7 != 2
 assert(isAddish(127183) == True) # 12 + 71 == 83
 assert(isAddish(123400011235) == True) # 1234+1 == 1235
 assert(isAddish(278) == False) # 2 + 7 != 8
 assert(isAddish(-279) == False) # not positive
 assert(isAddish(0) == False) # not positive
 assert(isAddish(279.0) == False) # not an int
 assert(isAddish('279') == False) # not an int

Begin your answer to FR2 here:

Bonus Code Tracing (BonusCT) [Optional, 2 pts]
Bonus problems are not required.
For this CT, indicate what the code prints.
Place your answer (and nothing else) in the box below the code.

BonusCT1:

def f(g, h, x): return g(h(x)) + h(g(x))
def g(h): return h**2 + h
def h(g): return g**3 - g + 1
def bonusCt1():
 print(f(g,h,1) + f(h,g,2))

bonusCt1()

