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Chapter 1

Introduction

Sundance is a system for rapid development of high-performance parallel finite-element solutions of partial dif-
ferential equations. The motivation for writing Sundance is a conviction that you should be able to code a finite
element problem using the same level of abstraction you would use to describe the problem on a blackboard. Sun-
dance provides a set of high-level components with which you can specify and solve a problem. The high-level
nature of the components means that you need not worry about tedious and error-prone bookkeeping details. In
addition to the advantage of conceptual simplicity and freedom from bookkeeping, this component-based approach
allows a high degree of flexibility in the formulation, discretization, and solution of a problem.

Sundance solves PDEs using the finite-element method: a general, powerful, and quite elegant method for
turning a PDE into a discrete system of algebraic equations. To use Sundance, you will need to understand the
fundamentals of the finite-element method. Many introductory textbooks are available, such as Hughes[?]. A nice
one-chapter introduction to the finite-element method set in the broader context of numerical solution of differential
equations can be found in Iserles[?]. Some of the more subtle aspects of the finite element method are described in
the books by Gresho and Sani[?] (with an emphasis on fluid mechanics), Belytscheko et al (emphasizing nonlinear
solid mechanics), and Brenner and Scott (for the mathematician). Gresho and Sani[?] have an excellent literature
review with references to books at all levels.

This is not the place to teach you the finite-element method, but it is worth pointing out some salient features of
the finite-element method and their impact on how you will use Sundance.

o A finite-element model of a PDE is based on a weak form of the PDE. You will describe a PDE in Sundance
code using a high-level symbolic notation for writing weak forms. There can be more than one way to derive
a weak form for a given PDE.

e The geometric domain for your problem will decomposed into a discrete mesh of cells. Meshing a continu-
ous geometric figure represented by an equation or CAD drawing is a difficult problem in both theory and
practice. Sundance has some simple mesh generation capability built in; however, for all but the simplest toy
problems you will instead want to use a third-party mesher and import that mesh into Sundance.

e A finite-element model approximates a PDE by a discrete system of algebraic equations: linear algebraic
equations for a linear PDE, nonlinear equations for a nonlinear PDE. This process of going from a PDE to an
system of algebraic equations is called discretization. There are many factors that influence the final discrete
form of the equation: choice of weak form, method of imposing BCs, basis functions for the unknowns in the
problem, and more.

e Designing algorithms, or solvers, for solving large system of linear equations is another difficult area of
computational mathematics. There is definitely not a one-size-fits-all solver for Kx = f. The optimal solver
for a given problem can depend critically on the structure of the stiffness matrix! K. Sundance lets you choose
a solver to suit the structure of your problem, and provides an interface for plugging in high-performance
linear algebra software.

IThe matrix K and vector f the in the linear system arising from a finite-element model are often called the stiffness matrix and load vector
because of the historical origins of the finite-element method in structural mechanics. We'll often use those names even in problems where K
and f do not have the physical interpretation of stiffness and load.
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e Solution of a nonlinear problem can be reduced to solving a sequence of linear problems. There are many
choices of linearization method and iteration method for a nonlinear problem, each of which will result in a
different sequence of linear problems.

e Solution of a time-dependent problem can be also reduced to solving a sequence of linear problems, by
timestepping or marching. Again, there are many possible marching algorithms.

After reading the above list you should have the idea that solving PDEs with the finite-element method is a
very open-ended business, and that in designing a simulation you will be faced with a large number of choices.
Sundance is intended to let you make those choices by selecting and combining high-level objects rather than by
writing low-level code.

Note that Sundance cannot help you make good choices — for that you will have to rely on your understanding
of the problem. Unfortunately, Sundance has no way to detect if you use its components to build an unstable or
innaccurate discretization or choose a solver that is inefficient for your problem.

1.1 About the code and the documentation

Sundance is written in the C++ programming language. To write your own Sundance simulation, you will have to
write and compile C++. However, you need not be an expert C++ programmer, because you can do most things
using Sundance’s predefined objects. The trick to writing Sundance code is to understand the behavior of the user-
level objects. The main purpose of this document is to show you how to use Sundance’s user-level objects to set up
and solve PDEs.

1.1.1 Typographical conventions in the source code and examples

Class names begin with capital letters, and each word within the name also begins capitalized. For example:
MeshReader and DiscreteFunction are classes. Method names and variables begin with lower-case letters, but
subsequent words within the name are capitalized. For example: getCells() and numCells() are methods. If you
forge on to read the developer’s documentation or source code, you will need to know that data member names
end with an underscore, for example: myName_.

1.2 Example: Poisson on a plate

Enough preliminaries, let’s do a problem. We'll solve the Poisson equation with a unit source
Viu=1 (1.1)

on the rectangle [0,0] - [1,2]. The sides of the rectangle will be labeled left, right, bottom, top. For boundary
conditions, we will choose

left Homogeneous Neumann, Vu -n = 0

2

bottom Dirichlet, u = 5x

1
2

e right Robin, u + Vu-f = % +

[SSIES

e top Neumann, Vu-f =1/3
It is easy to check that the solution is

1
u= Ex + gy. (1.2)

The solution is in the subspace spanned by second-order Lagrange polynomials, so if we choose that as our basis
family we can expect to obtain the exact solution. We can compute the error norm at the end of the calculation as a
check that the code is working properly.

This is a simple problem, but it in fact uses most of the components used by Sundance to do more complex
problems.
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1.2.1 Step-by-step explanation

We start with a step-by-step walkthrough of the code for solving the Poisson problem. When finished, there will be
a summary and then the complete Poisson solver code will be listed for reference.

Boilerplate

A dull but essential first step is to show the boilerplate C++ common to nearly every Sundance code:

#include "Sundance.h"

int main(int argc, voidx** argv)
{
try
{

Sundance::init(argc, argv);

/*
* code body goes here
*/
}
catch(exception& e)
{
Sundance: :handleException(__FILE__, e);
}

Sundance: :finalize();

}

The body of the code — everything else we discuss here — goes in place of the comment code body goes here.

Getting the mesh

Sundance uses a Mesh object to represent a discretization of the problem domain. There are two ways to get a Mesh
object:

o Create it using Sundance’s built-in mesh generation capability. This is limited to meshing very simple domains
such as rectangles.

e Read a mesh that has been produced using a third-party mesh generator. The MeshReader class provides an
interface for reading arbitrary file formats.

For this simple problem, we can use Sundance to generate the mesh.

MeshGenerator mesher = new RectangleMesher(0.0, 1.0, nx, 0.0, 2.0, ny);
Mesh mesh = mesher.buildMesh();

If you know a little C++ —just enough to be dangerous — you might think it odd that the result of the new operator,
which returns a pointer, is being assigned to a MeshGenerator object which is — apparently — not a pointer. That’s
not a typo: the MeshGenerator object is a handle class that stores and manages the pointer to the RectangleMesher
object. Handle classes are used throughout user-level Sundance code, and among other things relieve you of the
need to worry about memory management.

Defining coordinate functions

In the Poisson example, the boundary conditions involve functions of the coordinates x and y. We will create objects
to represent the coordinate functions x and y.
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Expr x = new CoordExpr(0);
Expr y = new CoordExpr(1);

You have probably guessed that the integer argument to the CoordExpr constructor gives the coordinate direc-
tion: 0 for x, 1 for y, 2 for z.

The coordinate functions are wrapped in Expr handle objects. Class Expr is used for all symbolic objects in Sun-
dance. Exprs can be operated on with the usual mathematical operators. With our coordinate functions represented
as Expr objects, we can build complicated functions of position.

Defining the cell sets

We've already read a mesh. We need a way to specify where on the mesh equations or boundary conditions are to
be applied. Sundance uses a CellSet object to represent subregions of a geometric domain. A CellSet can be any
collection of mesh cells, for example a block of maximal cells, a set of boundary edges, or a set of points.

The CellSet class has a subset () method that can be used as a “filter” that identifies cells that are in a subset
defined by the arguments to the subset method.

We will apply different boundary conditions on the four sides of the rectangle, so we will want four CellSets,
one for each side. We first create a cell set object for the entire boundary,

CellSet boundary = new BoundaryCellSet();

and then we find the four sides as subsets of the boundary cell set. The four sides of the rectangle can be specified
with logical operations on coordinate expressions, as shown in the following code:

CellSet left = boundary.subset( x == 0.0 );
CellSet right = boundary.subset( x == 1.0 );
CellSet bottom = boundary.subset( y == 0.0 );
CellSet top = boundary.subset( y == 2.0 );

Creating a discrete function

Symbolic expressions have already been introduced. We will use discrete functions several places in this problem.
A discrete function takes as a constructor argument a vector space object that specifies the mesh, basis, and vector
representation to be used in discretizing the function.

The first step is to create a vector space factory object that tells us what kind of vector representation will be
used. We'll use Petra vectors, so we create a PetraVectorType.

TSFVectorType petra = new PetraVectorType();

We can now create a SundanceVectorSpace containing the mesh, a basis (2nd order Lagrange in this case) and
the vector space factory.

TSFVectorSpace discreteSpace = new SundanceVectorSpace(mesh, new Lagrange(2), petra);

Finally, we can create discrete functions to represent the source term f = 1.0 and the expression 3 + ¥ that
appears in the right BC. Note that there’s no particular need to to use discrete functions for those terms; we do so

here simply to provide an example of constructing a discrete function.

Expr f = new DiscreteFunction(discreteSpace, 1.0);
Expr rightBCExpr = new DiscreteFunction(discreteSpace, 1.5 + y/3.0);

Defining unknown and test functions

We’ll use 2nd order piecewise Lagrange interpolation to represent our unknown solution u. With a Galerkin method
we use a test function v defined using the same basis as the unknown. Expressions representing the test and
unknown functions are defined easily:

Expr v = new TestFunction(new Lagrange(2));
Expr u = new UnknownFunction(new Lagrange(2));
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Creating the gradient operator

The gradient operator is formed by making a List containing the partial differentiation operators in the x and y
directions.

Expr dx = new Derivative(0);
Expr dy = new Derivative(1);
Expr grad = List(dx, dy);

The gradient thus defined is treated as a vector with respect to the overloaded multiplication operator used to
apply the gradient, so that an operation such as grad*u expands correctly to {dx*u, dy*u}.

Writing the weak form

We will use the Galerkin method to construct a weak form. Begin by multiplying Poisson’s equation Equation 1.1

by a test function v and integrating
—/ szu—/ vf =0. (1.3)
Q Q

The next step is to integrate by parts, which has the effects of lowering the order of differentiation (and thus relaxing
the differentiability requirements on the unknown and test functions) and also making manifest the boundary flux.

The resulting weak form is
—/Vv-Vu—/vf+/ oVu-Ai=0 (1.4)
Q Q 200

and we will require that this equation hold for any test function v in the space of 2nd order Lagrange interpolants
on our mesh. The boundary term gives us a way to apply certain boundary conditions: we can apply the Neumann
and Robin BCs by substituting an appropriate value for Vu - i in the boundary term. Referring to the boundary
conditions above and our definition of the discrete function rightBCExpr, the weak form is written in Sundance as

Expr poisson = Integral(-(grad*v)*(grad*u) - f*v)
+ Integral(top, v/3.0)
+ Integral(right, v*(rightBCExpr - u));

Notice that the homogeneous BC on the left side does not need to be written explicitly because that boundary
term is zero.

Writing the essential BCs

The weak form contains the physics in the body of the domain plus the Neumann and Robin boundary conditions.
We still need to apply the Dirichlet boundary condition on the bottom edge, which we do with an EssentialBC
object

EssentialBC bc = EssentialBC(bottom, vx(u - 0.5%x*x));

The first argument gives the region on which the boundary condition holds, and the second gives an expression
that is to be set to zero. Notice that there is a test function in the BC; this identifies the row space on which the BC
is to be applied.

Creating the linear problem object

A StaticLinearProblemobject contains everything that is needed to assemble a discrete approximation to our PDE:
a mesh, a weak form, boundary conditions, specification of test and unknown functions, and a specification of the
low-level matrix and vector representation to be used. All of this information is given to the constructor to create a
problem object

StaticLinearProblem prob(mesh, poisson, bc, v, u, petra);
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It may seem unnecessary to provide v and u as constructor arguments here; after all, the test and unknown func-
tions could be deduced from the weak form. In more complex problems with vector-valued unknowns, however,
we will want to specify the order in which the different unknowns and test functions appear, and we may want
to group unknowns and test functions into blocks to create a block linear system. Such considerations can make a
great difference in the performance of linear solvers for some problems. The test and unknown slots in the linear
problem constructor are used to pass information about the function ordering and blocking to the linear problem;
these features will be used to effect in subsequent examples.

Specifying the solver

A good choice of solver for this problem is BICGSTAB with ILU preconditioning. We'll use level 2 preconditioning,
and ask for a convergence tolerance of 10~14 within 500 iterations.

TSFPreconditionerFactory precond = new ILUKPreconditionerFactory(2);
TSFLinearSolver solver = new BICGSTABSolver(precond, 1.e-14, 500);
Solving the problem

The syntax of Sundance makes the next step look simpler than it really is:

Expr soln = prob.solve(solver);

What is happening under the hood is that the problem object prob builds a stiffness matrix and load vector,
feeds that matrix and vector into the linear solver solver. If all goes well, a solution vector is returned from the
solver, and that solution vector is captured into a discrete function wrapped in the expression object soln.

Viewing the solution

We next write the solution in a form suitable for viewing by Matlab.

FieldWriter writer = new MatlabWriter ("heat2D.dat");
writer.writeScalar (mesh, "temperature", soln);
Checking the error norm

Finally, we compare to the exact solution by computing the error norm. The solution has been returned as a Sun-
dance expression, so we can form an expression for the error

Expr exactSoln = 0.5xx*x + y/3.0;
Expr error = exactSoln - soln;

and then take the L2 norm

double errorNorm = error.norm();

1.2.2 Complete code for the poisson problem

#include "Sundance.h"

/** \example heat2D.cpp
Solve Poisson’s equation with a unit source term on the
rectangle [0,1] x [0, 2] with the following boundary conditions:

Left: Natural, du/dx = 0

Bottom: Dirichlet, u= 0.5 x°2

Right: Robin, u + du/dx = 3/2 + y/3
Top: Neumann, du/dy = 1/3

* X X ¥ X X x
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*
* The solution is u(x,y) = 0.5*x"2 + y/3.
*
*

This problem can be solved exactly in the space of second-order polynomials.

*/

int main(int argc, void** argv)
{
try
{

Sundance: :init (argc, argv);

/* create a simple mesh on the rectangle */

int nx = 20;

int ny = 20;

MeshGenerator mesher = new RectangleMesher(0.0, 1.0, nx, 0.0, 2.0, ny);
Mesh mesh = mesher.getMesh();

/* define coordinate functions for x and y coordinates */
Expr x = new CoordExpr(0);
Expr y = new CoordExpr(1);

/* define cells sets for each of the four sides of the rectangle */
CellSet boundary = new BoundaryCellSet();

CellSet left = boundary.subset( x == 0.0 );

CellSet right = boundary.subset( x == 1.0 );

CellSet bottom = boundary.subset( y == 0.0 );

CellSet top = boundary.subset( y == 2.0 );

/* Create a vector space factory, used to
* specify the low-level linear algebra representation */
TSFVectorType petra = new PetraVectorType();

/* create a discrete space on the mesh */
TSFVectorSpace discreteSpace = new SundanceVectorSpace(mesh, new Lagrange(2), petra);

/* We’ll use a discrete function to represent the

* source term, providing a test

* of our ability to evaluate discrete functions on maximal cells *x/
Expr f = new DiscreteFunction(discreteSpace, 1.0);

/* We’ll use a discrete function to represent the imposed
* boundary value on the right-hand boundary. This provides a
* test of our ability to evaluate discrete functions on
* lower-dimensional cells. */
Expr rightBCExpr = new DiscreteFunction(discreteSpace, 1.5 + y/3.0);

/* create symbolic objects for test and unknown functions */
Expr v = new TestFunction(new Lagrange(2));
Expr u = new UnknownFunction(new Lagrange(2));

/* create symbolic differential operators */

11
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}

}

{

}

CHAPTER 1. INTRODUCTION

Expr dx = new Derivative(0);
Expr dy = new Derivative(1);
Expr grad = List(dx, dy);

/* Write symbolic weak equation and Neumann and Robin BCs */
Expr poisson = Integral(-(grad+*v)*(grad*u) - fxv, new GaussianQuadrature(2))
+ Integral(top, v/3.0) + Integral(right, v*(rightBCExpr - u));

/* Write essential BCs:
* Bottom: u=x"2
*/
EssentialBC bc = EssentialBC(bottom, vx(u - 0.5%x*x),
new GaussianQuadrature(4));

/* Assemble everything into a problem object, with a specification that
* Petra be used as the low-level linear algebra representation */
StaticLinearProblem prob(mesh, poisson, bc, v, u, petra);

/* create a preconditioner and solver */
TSFPreconditionerFactory precond = new ILUKPreconditionerFactory(1);
TSFLinearSolver solver = new BICGSTABSolver(precond, 1.e-14, 500);

/* solve the problem and return the solution as a symbolic object */
Expr soln = prob.solve(solver);

/* write to matlab */
FieldWriter writer = new MatlabWriter ("heat2D.dat");
writer.writeField(soln);

/* compare to known solution */
Expr exactSoln = 0.5*x*x + y/3.0;

// compute the norm of the error
double errorNorm = (soln-exactSoln).norm(2);

double tolerance = 1.0e-9;

Testing::passFailCheck(__FILE__, errorNorm, tolerance);

catch(exception& e)

Sundance: :handleError (e FILE__);

| J—

Sundance: :finalize();

1.3 Handles and memory management in Sundance

Understanding handle classes and how they are used in Sundance is important for reading and writing Sundance
code and browsing the source and class documentation. Handle classes are used in Sundance to simplify user-level
polymorphism and provide transparent memory management.

Polymorphism is a buzzword meaning the representation of different but related object types (derived classes,
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or subclasses) through a common interface (the base class). In C++, you can’t use a base-class object to represent
a derived class; you have to use a pointer to the base class object to represent a pointer to the derived class. That
leads to a rather awkward syntax and also requires attention to memory management. To simplify the interface and
make memory management automatic, all user-level polymorphism is done with handle classes. A handle class is
simply a class that contains a pointer to a base class, along with an interface providing user-callable methods, and
a (presumably) intelligent scheme for memory management.

So if you want to work with a family of Sundance objects, for instance the different flavors of symbolic objects,
you need only use:

e the methods of the handle class for that family of classes
e the constructors for the derived classes.

You do not need to, and shouldn’t, use any methods of the derived classes; all work with the family should be done
with methods of the handle class.

For example, Sundance symbolic objects are represented with a handle class called Expr. The different symbolic
types derive from a class called ExprBase, but they are never used directly after construction; they are used only
through the Expr handle class. The code fragment below shows some Exprs being constructed through subclass
constructors and then being used in Expr operations.

Expr x = new CoordExpr(0, "x");
Expr £ = x + 3.0*sin(x);

Expr dx = new Derivative(0);
Expr df = dxx*f;

Notice that a pointer to a subclass object is created using the new operator, and then given to the handle. The
handle object assumes responsibility for that pointer: it does all memory management, any copying that might
occur, and will eventually delete it. You, the user, should never delete a pointer that has been passed to a handle.
Memory management is the responsibility of the handle. Code such as this will seem familiar to Java programmers,
who call new but never delete.

Thanks to handles, when writing Sundance code you can always assume that

e User-level classes have well-defined behavior for copying and assignment.
e User-level classes have well-defined destructors, and take care of their own memory management.

Data structures in a PDE simulation can become rather large; for this reason, objects such as meshes, matrices,
and degree-of-freedom maps are shallow-copied so that both the original and the copy refer to the same chunk of
memory. A reference counted “smart pointer” inside the handle is used to ensure that data is deleted only when
necessary. It is important to understand that such a copying scheme leads to side effects: when a copy is modified,
the original is modified as well.

1.4 Parallel computation

Sundance can both assemble and solve linear systems in parallel. Parallel Sundance uses the SPMD paradigm, in
which the same code is run on all processors. Communication is done using an object wrapper for MPIL To use
Sundance’s parallel capabilities, the CPPUtilities package supporting Sundance has to be built with MPI enabled,
and you must use a parallel solver such as Trilinos. See the installation documentation for help in installing parallel
Sundance.

One of the design goals was to make parallel solves look to the user as much as possible like serial solves. In
particular, the symbolic description of an equation set and boundary conditions is completely unchanged from
serial to parallel runs. To run a problem in parallel, you simply need to use a parallel solver (such as trilinos) and
use a partitioned mesh.

Operations such as norms and definite integrals on discrete functions are done such that the result is collected
from all processors.
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Symbolic Expressions

In Sundance one writes equations and boundary conditions and does auxiliary steps such as postprocessing and
error estimation using a family of symbolic objects.

2.1 Overview of the Expr class

Class Expr, short for expression, is the user-level handle for all symbolic objects. An Expr can be an atomic entity
such as a constant, a function, or a differential operator; or an expression can be a compound object such as a sum,
project, or list of expressions. A comprehensive list of user-level methods can be found in section A.1.1.

Many different kinds of objects, with different behaviors, are represented with Expr objects. In object-oriented
design jargon, the Expr family is weakly-typed. This is key to giving Expr the behavior needed, but does have an
important drawback: is is quite possible to form nonsensical expressions, and such errors cannot be detected at
compile-time.

2.1.1 Lists of expressions

Exprs can be aggregated into lists with arbitrarily heterogeneous structure. Lists of expressions have many uses,
such as representing vector fields

Expr position = List(x, y, x); // form position vector from coordinates

or simply gathering together a number of expressions. Lists can be heterogeneous, so that it is possible to form
lists such as

Expr myList = List(a, List(b, c), List(List(d, List(e, f), g))); // {a, {b,c}, {d, {e,f}, g}
An important use of expression lists is in controlling the row and column structure of a linear operator to be
assembled by Sundance.

2.1.2 Elementary mathematical operations

Operator overloading has been used to define mathematical operations on Expr objects. Mathematical operations
on expression objects return expression objects. The usual arithmetic operations are defined for Exprs.

e a + baddsExpr aand Expr b. The two operands must have identical list structures.
e a - bsubtracts Expr b from Expr a. The two operands must have identical list structures.
e -areturns the additive inverse of a.

e a * b takes the product of Expr aand Expr b. The meaning of this operation depends on the list structure of
a and b. If either a or b is scalar-valued, the product means multiplication by a scalar. For example,

15
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Expr a = 2.0;
Expr position = List(x, y);
Expr f = a*position; // results in {a*x, axy}

The multiplication operator is also meaningful when the two operands have a list structure such that multi-
plication can be interpreted as a tensor contraction operation (generalized dot product). For example,

Expr force = List(fx, fy);
Expr velocity = List(vx, vy);
Expr power = force * velocity; // results in fxxvx + fy*vy;

e a / bdivides Expr aby Expr b. The denominator must be a scalar. For example,

Expr position = List(x, y);
Expr force = -position / pow(position*position, 1.5); // Coulomb force

Elementary functions

In addition to the arithmetic operations, the usual elementary functions are defined for Sundance expressions.
Arguments of elementary functions must be scalar-valued; violation of this rule will result in a runtime error.
Since Sundance does not support complex numbers, the arguments of each function are restricted to the domain
that maps to real principal values; for example, the argument of the natural logarithm function log must be a
positive number. The names used for the elementary functions conform to those in the standard C math library,
e.g. sqrt for the square root. One “gotcha” for fortran and matlab programmers is that the absolute value function
is called fabs in accord with the C standard. See section A.1.1 for a complete listing of the elementary functions
known to Sundance. Should you need a function that cannot be written easily or efficiently in terms of elementary
functions, don’t despair: you can add your own user-defined function to Sundance’s symbolic system as a plug-in
(see section ??

Integrals and norms

You will sometimes need to compute the definite integral of an expression over a domain, for example in computing
the value of an objective function in an optimization problem. A very common special case is computing the L?
norm of a function over a region Q, defined as

il = [ [ 1score] e

Note that the L* norm is the maximum value of a function.
Sundance has methods to compute integrals and norms. The most general method to compute an integral of an
expression is

double Expr::integral(const Mesh& mesh,
const CellSet& cellSet, const QuadratureFamily& quad) const ;

which will integrate over the subdomain of mesh defined by the cell set cellSet, using quadrature rules derived
from the quadrature family quad. Any of those arguments can be omitted in favor of default arguments, but if the
mesh argument is omitted the expression in question must be a discrete function. There are also methods to do the
special case of a norm, for instance

double Expr::norm(int p, const Mesh& mesh,
const CellSet& cellSet, const QuadratureFamily& quad) const ;

is the most general method for computing the L? norm. Since we cannot give p = oo as an argument to the
standard norm methods, there is a special method, maxNorm(), for computing the L*® norm. The default norm()
method computes the L? norm of a discrete function over the entire domain. Finally, the method quickNorm()
computes the norm of the vector underlying a discrete function; note that this will not in general be equal to the
norm of the discrete function but when a “quick and dirty” norm is all that is needed, it can be somewhat faster to
compute. A summary of all integral and norm methods is given in section A.1.1



2.2. EXPRESSION TYPES 17

2.2 Expression types

The simplest type of Expr to create is a constant real-valued Expr, for example:
Expr solarMass = 2.0e33; // mass of the Sun in grams

Any constant that appears in an expression, for example the constant 2.0 in the expression below,
Expr £ = 2.0%g;

will also be turned into a constant-valued expression. It is important to understand that once created and used
in an expression, a constant’s value is immutable. If you want to change the constant, you should instead use a
Parameter.

The following code will not work as you intend:

Expr time = 0.0;

for (int i=0; i<10; i++)

{

cerr << time << ‘¢ ‘¢ << sin(pi*time) << endl;
// update the time

time = time + 0.1;

}

2.2.1 Parameter expressions

Often you will form a PDE with parameters that will change during the course of a calculation. For example, in a
time-marching problem both the time and the timestep can change from step to step. Or, you may want to run a
fluid flow simulation at several different values of the Reynolds number. To include in your equation a parameter
that is constant in space but can change with time or some other way, you should represent that parameter with a
Parameter expression.

Expr time = new Parameter(0.0);

for (int i=0; i<10; i++)

{

cerr << time << ‘¢ ‘¢ << sin(pi*time) << endl;
// update the time

time.setValue(time.value() + 0.1);

}

The above assume that the parameter is known. However, in some problems a parameter might be an unknown
to be determined in the course of solving a problem. In that case, use an UnknownParameter, described in section ??.

2.2.2 Coordinate expressions

CoordExpr is an expression subtype that is hardwired to compute the value of a given coordinate. Its constructors
are

CoordExpr (int direction);
CoordExpr (int direction, const string &name);

For example, to construct an Expr that represents the coordinate on the zeroth (x) axis, create a new CoordExpr
object and pass it to an Expr ctor as follows:

Expr x = new CoordExpr(0); // represents x-coordinate value
Such a coordinate expression can be used to define simple position-dependent functions, for example

Expr f = sin(x) + 1/4.0%sin(2.0*x) + 1/8.0%sin(3.0%*x);
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2.2.3 Differential operators

The key expression subtype for forming differential operators is the Derivative object, representing a partial
derivative in a given direction. A Derivative is constructed with a single integer argument giving the direction of
differentiation, for example,

Expr dx = new Derivative(0); // differentiate with respect to 0 coordinate

Derivatives are applied using the multiplication (*) operator.
Sundance expression objects are programmed to obey the rules of differential calculus. For example,

Expr dx = new Derivative(0); // differentiate with respect to 0 coordinate

Expr x = new CoordExpr(0); // represents x-coordinate value
Expr y = new CoordExpr(0); // represents y-coordinate value
Expr f = x*sin(x) + y*x;

Expr df = dxx*f;
cout << df << endl; // prints sin(x) + x*cos(x) + y;

Differentiation of discrete functions requires special care, and is discussed in 2.2.5

2.2.4 Test and unknown functions

Expression subtypes TestFunction and UnknownFunction are used to represent test and unknown functions in
weak PDEs and boundary conditions. They are constructed with a BasisFamily object which specifies the subspace
to which solutions and test functions are restricted. For example,

Expr T = new UnknownFunction(new Lagrange(1));
Expr varT = new TestFunction(new Lagrange(1));

constructs unknown and test functions that live in the space spanned by first-order Lagrange interpolates, i.e.,

all piecewise linear functions.

2.2.5 Discrete functions

Discrete functions represent the value of a field that has been discretized on a space of basis functions. Discrete
functions have a number of important uses:

e representing the solution of a finite-element problem
e representing a field for which no analytical expression is available
A discrete function object can be created in a number of ways: by computing the value of an expression on the

nodes in a mesh, by reading it from a file, or by “capturing” a solution vector into a discrete function.

Creating a scalar-valued discrete function

To create a discrete function, we first need to know the discrete space on which the function will be defined. The
construction of this space requires at minimum a mesh, a basis function, and a vector type.

TSFVectorType petra = new PetraVectorType();
BasisFamily basis = new Lagrange(1);
TSFVectorSpace discreteSpace = new SundanceVectorSpace(myMesh, basis, petra);

Once you have a discrete space, you can create a discrete function as follows:

Expr f = new DiscreteFunction(discreteSpace, sin(x)*sin(y));
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Creating a vector-valued discrete function

Discrete functions representing vector-valued fields have some wrinkles that are important to understand. Consider
a discrete function representing a two-component vector field, u =

left(uy, uy

right). How is the vector underlying this function stored? One can imagine creating two independent discrete
functions

Expr ux = new DiscreteFunction(discreteSpace, sin(x)*sin(y));
Expr uy = new DiscreteFunction(discreteSpace, cos(x)*cos(y));

and forming a vector-valued expression using the List operator,
Expr u = List(ux, uy);

This is well-defined Sundance code, but it is not usually what you want. A calculation will have improved
performance due to cache efficiency if both functions are aggregated into a single vector, with u, and u, at each cell
listed together. To achieve this aggregation, we need to create a discrete space capable of representing vector-valued
functions.

TSFVectorType petra = new PetraVectorType();

BasisFamily basis = new Lagrange(1);

TSFArray<BasisFamily> multiVariableBasis = tuple(basis, basis);

TSFVectorSpace multiVariableDiscreteSpace

= new SundanceVectorSpace(myMesh, multiVariableBasis, petra);

Expr u = DiscreteFunction::discretize(multiVariableDiscreteSpace,
List(sin(x)*sin(y), cos(x)*cos(y)));

In many problems, it is necessary to use a mixed set of basis functions. For example, in the Taylor-Hood dis-
cretization of the incompressible Navier-Stokes equations, the velocity components are represented with 2nd order
polynomials and the pressure with 1st order polynomials.

TSFVectorType petra = new PetraVectorType();

BasisFamily basisl = new Lagrange(1);

BasisFamily basis2 = new Lagrange(2);

TSFArray<BasisFamily> multiVariableBasis = tuple(basis2, basis2, basisl);

TSFVectorSpace multiVariableDiscreteSpace

= new SundanceVectorSpace(myMesh, multiVariableBasis, petra);

Expr uAndP = DiscreteFunction::discretize(multiVariableDiscreteSpace,
List(y, x, 0.0));

Reading a discrete function

Many mesh file formats have the ability to store field data along with the mesh. This field data can be associated
with elements or with nodes, depending on the application and the physical meaning of the field. Different mesh
file format will index fields in different ways; for example, the Exodus format associates names with fields, while
Shewchuk’s Triangle format simply lists attributes. Generally, we can look up fields by either a name or by a number
indicating the position in an attribute list.

MeshReader reader = new ShewchukMeshReader (‘‘myMesh’’);
Expr temperature = reader.getNodalField(0);

Expr velocity = reader.getNodalField(1, 2, 3)

Expr pressure = reader.getElementalField(4)

MeshReader reader = new ExodusMeshReader (‘‘myMesh.exo’’);
Expr pressure = reader.getElementalField(‘‘pressure’’);
Expr velocity = reader.getNodalField(‘‘ux’’, ‘‘uy’’, ‘‘uz’’)
Expr temperature = reader.getNodalField(‘‘temperature’’);
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Derivatives of discrete function

Many basis functions used in finite elements calculations are only piecewise differentiable: the function is con-
tinuous everywhere and differentiable in the interior of each cell, but the derivative is not defined at boundaries
between cells. Such basis functions, and functions represented with them, are said to have C° continuity. Since
the derivative of such a function will not be continuous at element boundaries, the derivative of a C° function is
not necessarily C°. Thus, the derivative of a discrete function defined with a particular discrete space cannot be
represented exactly with another discrete function defined with that same space.

For this reason, it is impossible to create directly a discrete function from the derivative of another discrete
function. The following will result in a runtime error:

Expr f = new DiscreteFunction(discreteSpace, sin(x));
Expr dfdx = new DiscreteFunction(discreteSpace, dx*f);

If f is a C° function, it is possible to integrate derivatives of f. The integral is well-defined since the region on
which f is nondifferentiable have no volume. Numerically, it is usually possible to do such integrals because the
quadrature points are usually in the interiors of cells. So it’s perfectly sensible, and quite common, to write a weak
PDE that includes derivatives of discrete functions.

What is not possible is to obtain pointwise values of the derivative of a discrete function. This is not a common
operation during the solution of a PDE, but you may often want to see derivative values during postprocessing and
analysis. Because pointwise values are not available, it is impossible to create directly a discrete function from the
derivative of another discrete function. The following will result in a runtime error:

Expr f = new DiscreteFunction(discreteSpace, sin(x));
Expr dfdx = new DiscreteFunction(discreteSpace, dx*f);

If you really want to look at pointwise derivative values, the best that can be done is to approximate the deriva-
tive by projecting into a CY space. There are many ways to do this; one of the most common is a least-squares
projection, in which you choose coefficients such as to minimize the squared residual.

This is a common enough operation that Sundance has a predefined method for least-squares projection:

// £0 is a discrete function
Expr gradF = L2Projection(discreteSpace, List(dx, dy)*f0);

Note that since this operation requires the solution of a linear system, it is time-consuming. Again, it usually
needs to be done only as a postprocessing step.

Finally, it should be pointed out that the difference between a derivative and its L? projection will decrease as
the function becomes smoother. For this reason, the L? residual of a derivative can be used as an error estimator.

2.2.6 Test and unknown parameters

Expression subtypes TestParameters and UnknownParameter are used to represent test and unknown functions
that are independent of space.

2.3 Functionals

2.3.1 Assignment and copy semantics

It is very important to understand the behavior of the assignment operator and copy constructor for Expr objects.
Assignment and copy are by reference, so that if you create an expression

f=a+b+c;
and then change the value of c,
c = sin(x);

that change will instantly propagate to the copy of c in the sum f.
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cout << f << endl; // will print a + b + sin(x)

This feature lets you automatically update expressions in timestepping or nonlinear solve loops, making the
code for such problems more efficient and much easier to understand. The case when the lhs of an assignment
operator appears on the rhs is handled as follows: the sequence of operations

x = b5;
X =y + x;

leavesx settoy + 5.
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Chapter 3

Geometry

3.1 Meshes

Sundance can use unstructured meshes in 1, 2, or 3 dimensions. To Sundance, a Mesh object is a connected complex
of cells. A zero-cell is a point. A maximal cells is a cell with dimension equal to the spatial dimension of the mesh.
Each facet of a maximal cell is itself a cell, and so on down to zero cells. Every discrete geometric entity in Sundance

is a cell; there is no distinction between “elements”, “edges”, and “nodes”. All are represented by Cell objects.
Sundance currently supports the following cell types:

e zero-cells: points

e one-cells: lines

o two-cells: triangles and quadrilaterals (“quads”)

e three-cells: tetrahedra (“tets”) and hexahedra (“bricks” or “hexes”)

The system for representing cells is extensible, so that an advanced user can add additional cell types such as prisms.

Most of the methods of the Mesh class are for Sundance’s internal use and will almost never appear at the user
level. You will sometimes work with Cell objects directly, for instance when probing the value of a function at a
point during postprocessing.

3.1.1 Meshl/O

There are almost as many mesh file formats as there are engineers, and it would be foolish to try to build support
for file I/O directly into the Mesh object. Sundance uses an extensible MeshReader class heirarchy to provide an
interface for reading from mesh formats. The current version of Sundance supports readers for three mesh formats:
a native Sundance text format, Shewchuk’s Triangle format, and Sandia’s Exodus II format. If you want to support
some other mesh format you will have to implement your own MeshReaderBase subtype.

Using a MeshReader is very simple. You create a MeshReader object as a handle to an appropriate subtype, and
then you call the readMesh() method to return a Mesh object. The following code reads a mesh in Shewchuk’s
Triangle format from files tBird.1.poly and tBird.1.ele:

MeshReader reader = new ShewchukMeshReader ("tBird.1");
Mesh mesh = reader.getMesh();

Similarly, to write a mesh to Triangle format one does

MeshWriter writer = new ShewchukMeshWriter("myMesh");
writer.writeMesh();
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3.1.2 Mesh generator interface

Class MeshGenerator provides an interface for mesh generators, and there are implementations for building several
simple mesh types. In principle it would be possible to connect a powerful third-party mesh generator to Sundance
through the mesh generator interface, but it is generally simpler to have the mesher write the mesh to a file which
can be read by a MeshReader object.

The most common use of MeshGenerator is to build toy meshes for test problems. The three built-in
MeshGenerator subtypes are

e LineMesher meshes a line
e RectangleMesher meshes a rectangle with triangles

e RectanglerQuadMesher meshes a rectangle with quadrilaterals

3.2 Cell sets

A CellSet object is used to define a set of cells on which an equation or boundary condition is to be applied. A
CellSet can be defined independently of any particular mesh; instead of a list of cells, it is a condition or set of
condition that can be used to extract a list of cells from a mesh.

3.2.1 The set of all maximal cells
The MaximalCellSet object identifies all maximal cells in a mesh. The constructor has no arguments:

CellSet maxCells = new MaximalCellSet();

3.2.2 The set of all boundary cells

A BoundaryCellSet object identifies all boundary cells of dimension N — 1. For example, in a 3D problem a
BoundaryCellSet will contain all 2D cells on the boundary, but not lines or points that happen to lie on the bound-

ary.
The constructor has no arguments:

CellSet boundaryCells = new BoundaryCellSet();

3.2.3 Defining subsets

Given a cell set, we can use the subset () method to define a condition that can extract a subset of the original cell
set. The condition can be a mathematical equation or inequality that must be satisfied by any cell to be accepted
into the set, or it can be a string label. In “real world” problems the most common condition for defining a cell set
will be a label that is associated with the cells by the code that produced the mesh.

CellSet boundary = new BoundaryCellSet();
CellSet wall = boundary.subset(‘‘wall’’);
CellSet arc = boundary.subset(x*x + y*y == 1.0 && x < 0.5);

3.2.4 Logical operations on cell sets

Cell sets can be created by doing set operations — union and intersection — on two or more existing cell sets. Union
and intersection are represented by the overloaded addition (+) and logical AND (&&) operators.
3.2.5 Material properties

3.2.6 Creating meshes from scratch

This section can be skipped on a first reading.
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3.3 Cells

Class Cell provides a unified interface for all mesh entities such as points, lines, triangles, and tets.

25
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Chapter 4

Weak Equations

4.1 Specifying the domain on which an equation holds

4.2 Quadrature Families

The integrals in a Sundance weak form are done by numerical integration, or quadrature. With quadrature, one
approximates an integral by a finite sum of weighted function values,

/f(x) dx = %wif(xi) 4.1)

=1

where the evaluation points x; and weights w; are chosen with care and cleverness to provide an accurate approxi-
mation.

What is relevant to user-level Sundance code is how one can specify a suite of quadrature rules to be used
for a given weak form. Notice that it will not suffice to specify a quadrature rule, because a given term may be
integrated on several different cell types. For example, a mesh may contain both quad cells and triangle cells,
and the two different cell types will require two different quadrature rules. What is needed is a specification of a
family of quadrature rules rather than a single rule. The user-level specifier of a family of quadrature rules is the
QuadratureFamily object. The buildQuadraturePoints() method of QuadratureFamily returns a set of quadra-
ture points and weights appropriate to a given cell type. The user picks a quadrature family by selecting the
appropriate subtype of QuadratureFamilyBase and supplying the desired constructor arguments. For example,

QuadratureFamily gauss4 = new GaussianQuadrature(4);

creates an object that can produce a 4-th order Gaussian quadrature rule for any cell type.

4.2.1 Gaussian Quadrature

Gaussian quadrature rules specify both points and weights to give optimal accuracy for all polynomials through a
given degree. Gaussian quadrature rules for a line can be derived from the properties of the Legendre polynomials;
see any textbook on numerical analysis for a discussion. Gaussian quadrature rules for quadrilaterals and bricks
can be formed as “tensor products” of line rules. The development of Gaussian quadrature rules for triangles
and tetrahedra is an ongoing research area; an online literature survey through 1998 can be found at Steve Vavasis’
quadrature and cubature page. Symmetric Gaussian quadrature rules through moderate order have been developed
for triangles by Dunavant[?] and for tetrahedra by Jinyun[?]. A summary of the quadrature rules that will be
generated by Sundance’s GaussianQuadrature object is given in the table below.
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| Cell type | Available orders | Reference | Comments |
Line all e.g. Hughes[?]
Triangle 1-12 Dunavant[?] Orders 3,7, and 11 have negative weights.
Quad any Tensor project of two line rules.
Tet 1-6 Jinyun|[?] Order 3 has a negative weight.
Brick any Tensor project of three line rules.




Chapter 5

Boundary Conditions

There are many ways to apply boundary conditions in a finite element simulation. To begin with, the way a bound-
ary condition gets written depends strongly on the way the weak problem has been formulated; boundary condi-
tions will be written quite differently in least-squares formulations than in Galerkin formulations.

5.1 General considerations

5.1.1 Specifying where a boundary condition gets applied

In Sundance, geometric subdomains are identified using Cel1Set objects. The surface on which a BC is to be applied
is specified by passing as an argument the Cel1lSet representing that surface.

5.1.2 Nonlinear Boundary Conditions

Some problems will have nonlinear boundary conditions, for example in radiative heat transfer from a convex
surface the heat flux is cT* where o is the Stefan-Boltzmann constant. Sundance requires you to handle nonlinear
BCs in the same way you handle nonlinear PDEs: by iterative solution of a linearized problem. The linearization
will depend on the iterative method used.

5.1.3 Nonlocal Boundary Conditions

Nonlocal boundary conditions arise naturally in problems such as radiative heat transfer from non-convex surfaces,
and can also occur as far-field boundary conditions in acoustics, electromagnetics, or fluid mechanics. Nonlocal
boundary conditions are handled with integral equations, and are not supported in the current version of Sundance.

5.2 BCs for Galerkin and Petrov-Galerkin Formulations

In a Galerkin or Petrov-Galerkin formulation, integration by parts yields boundary terms involving a test function
and the derivative of an unknown function.

5.2.1 Neumann Boundary Conditions

Neumann BCs specify the value of a normal derivative, or some combination of derivatives, along a boundary
surface. They arise in problems where a flux has been specified on a boundary; for example, a heat flux in heat
transfer or a surface traction (momentum flux) in solid mechanics. An important and quite common special case is
a homogeneous Neumann BC, where the boundary flux is zero; examples are insulating surfaces in heat transfer and
free surfaces in solid mechanics. Homogeneous Neumann BCs are often called natural BCs in the finite elements
literature, and they have a particularly simple representation.
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Writing Neumann BCs in Galerkin formulations is extremely simple. After integration by parts, we will have
boundary terms involving test functions times derivatives of our unknowns. To apply a Neumann BC, we simply
replace the derivatives appearing in those boundary terms with their value determined by the BC. Homogeneous
Neumann BCs, are a particularly simple special case because the boundary integrals go to zero, letting us satisfy
the BC by simply ignoring the boundary integrals.

5.2.2 Robin Boundary Conditions

Robin BCs, often called boundary conditions of the third kind, specify a linear combination of a field value and its
normal derivative. Robin BCs occur, for example, on a surface from which heat is carried by convection. Robin BCs
are handled similarly to Neumann BCs, in that we replace the derivative in a surface term with its value computed
from the BC; however, with a Robin BC we replace the derivative with a linear expression involving the unknown
field rather than with a known expression.

5.2.3 Dirichlet Boundary Conditions

Dirichlet boundary conditions specify the value of a field on a boundary segment. Some physical examples are
specifying the temperature on a surface that is in contact with a heat bath, or specifying that a viscous fluid “sticks”
to a surface.

In Galerkin formulations with bases where degrees of freedom correspond to nodal values, we can enforce
Dirichlet boundary conditions on certain nodes by replacing the PDE at those nodes with an equation representing
the Dirichlet BCs. This can be done nodewise or weakly over the boundary cell; note that nodewise BC application
is a special case of weak BC application obtained by using a nodal quadrature rule.

In Sundance we write such a boundary condition using the EssentialBC object. The most general constructor
for an EssentialBC takes as arguments

e the CellSet on which the BC is to be applied
e a weak form of the BC.

e a quadrature family.

5.2.4 Optional: More about Dirichlet BCs

The replacement scheme for Dirichlet boundary conditions described in the previous subsection above may seem
ad-hoc, however it can be given a sound mathematical foundation as a limit of a Robin boundary condition.

Without loss of generality, we’ll use as a model problem the Laplace equation with Dirichlet conditions u = ug
on the entire boundary:

V2u=0in Q (5.1)
u=upgonl. (5.2)
As usual, we form a weak equation by multiplying by a test function v and integrating, giving
ou
—/QVU-Vqu/rv%_O (5.3)
which must hold for all v in a suitable subspace. We now impose a Robin boundary condition
ou
€3, = Ut (54)

which in the limit e — 0 approaches the Dirichlet condition u# = ug. With this BC, the weak equation becomes

1
—/KIVU-VL[—FE/FU(M—uO):O (5.5)

At this point, we could simply take a small but nonzero € and solve the problem. This is equivalent to a penalty
method for imposing the BC, and unfortunately leads to poorly conditioned linear systems. We want to do better,
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and take the limit € — 0 so that the Dirichlet BC is satisfied exactly, yet we also want to avoid ill-conditioning. As
we will show, we can often have it both ways, taking the limit without ill-conditioning, but the argument must be
developed carefully because the way in which that limit is taken is important.

We will discretize the system before taking the limit. We expand u in a series of basis functions,

u(x) =% ujpj(x) (5.6)
j
and evaluate ?? wiuth each member of {¢} as test functions. The discrete equations are
1 1
[A—}——B] ‘u=-B-up (5.7)
€ €
where the matrices are defined as
Aj=— /Q KV - Vb, (5.8)
Bij= / didj (5.9)
r

At this point we make a critical assumption: that we are using either Lagrange or Serendipity basis functions. These
basis functions are nodal, by which we mean we can make an association between basis functions and mesh nodes,
and then define the basis functions in such a way that the i-th basis function ¢;(x) is zero at every node but the i-th.
Furthermore, these basis sets have the important property that only those basis functions ¢; associated with nodes on the
sutface T have nonzero values on the surface I'. We can now partition the equations and variables according to whether
each row or column is associated with a node on I'. Notice that the dangerous denominator appears only in terms
involving B, whose elements are obtained by integrating over I'. Thus all elements of B involving nodes not on I'
are zero. Marking elements associated with I with the superscript D and all others with the superscript I, we can
write each matrix as a block matrix, e.g.,
o D
A= [A A ] (5.10)

ADI ADD

In particular, from the argument above we know that all off-boundary elements of B are zero,

B= [g BgD]. (5.11)

With this notation, we can write out the system,

All AlD u! 0
[ADI ADD + %B |:llD:| - |:%B . u0:| (512)
Multiplying the second row by € removes the explosive denominator
AII AID uI 0
[eADI eAPD B] [uD] - [B . uo] (5.13)
so that it is safe to take the limit € — 0, yielding the well-behaved system
All  AID ul 0
o STl o) 10

This entire process can be summarized as such: for surfaces on which Dirichlet BCs apply, we simply replace all
equations by the Dirichlet boundary term. The bookkeeping for this would be daunting if we had to keep track of
off-boundary and on-boundary nodes in the equation specification. However, in Sundance the specification that
a term is to be handled in this special way, via replacement or, more precisely, via limit and rescaling, is done by
putting the term inside an EssentialBC object rather than an Integral object. The Sundance computational kernel
will figure out which rows get replaced and rescaled.
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Discontinous Dirichlet BCs

It is not uncommon to encounter boundary conditions in which a field is set to a function that is discontinuous.
An example is the lid-driven cavity problem of fluid mechanics, in which the x-component of velocity is zero along
the side walls and nonzero along the top lid. The x velocity is discountinuous at the two top corners, and it is
necessary to choose a scheme for assigning the boundary value at the points of discontinuity. Several ideas suggest
themselves:

o Pick one of the two boundary conditions and apply it at the corner point.

e Average the two boundary conditions.

5.3 BCs for Least-Squares Formulations

BCs in least-squares formulation can be applied either as essential BCs or by asking that the BC be satisfied in a
least-squares sense.

5.3.1 Dirichlet Boundary Conditions

5.3.2 Neumann Boundary Conditions

In a first-order least-squares formulation, the fluxes have been introduced explicitly as new unknowns. Thus a flux
boundary condition becomes a Dirichlet boundary condition for a flux variable. This Dirichlet boundary condition
can be applied either as an essential boundary condition or in a least-squares sense.

5.3.3 Robin Boundary Conditions

As with Neumann boundary conditions, in a first-order least squares problem we can replace the derivative term in
a Robin boundary condition with the appropriate flux variable, yielding a Dirichlet boundary condition involving a
field variable and a flux variable. This Dirichlet boundary condition can be applied either as an essential boundary
condition or in a least-squares sense.



Chapter 6

Linear Problem Assembly and Solution

The core capability of Sundance is the construction of a discrete system of linear equations based on information
contained in a symbolic representation of a problem. The class of equations that can be solved directly using this
core capability are static (meaning time-independent) linear problems. Time-dependent problems and nonlinear
problems are solved by iterating a sequence of static linear problems; the solution of such problems is described
later in ?? and ??.

This chapter describes how to set up a static linear problem in Sundance, how to control the formation of the
discrete linear system of equations, and how to interface to software components that can solve that system. The
object encapsulating a static linear problem is StaticLinearProblem.

6.1 The StaticLinearProblem object

A StaticLinearProblemis constructed with all information needed to form a discrete linear system of equations.
The most obvious things that will be needed for that specification are the equation, boundary conditions, and a
mesh on which the problem will be solved. Additionally, you must specify the order in which the equations must be
assembled and in which the unknowns will be listed, and you must also specify the vector and matrix representation
that will be used to store the system matrix and vector.

6.2 Specification of vector and matrix representation

There are many high-quality numerical linear algebra packages in use, so Sundance is designed to allow third-
party linear algebra packages to be imported as plugins. All numerical linear algebra in Sundance is done using the
Trilinos Solver Framework (TSF), and the TSF in turn supports plugins of third-party types.

User specification of a linear algebra representation is done by means of a TSFVectorType object. This object
knows how to build a vector space given a mesh and set of functions, and the vector space in turn knows how to
build a vector of the appropriate type.

6.3 Specification of row and column space ordering

The order in which equations and unknowns are written can make a difference in the performance of a linear
solver, and in keeping with the goal of flexibility, Sundance gives you the ability to specify this ordering. In order
to understand how Sundance’s ordering specification works, let’s look into how Sundance decides unknown and
equation numbering.

Given a mesh and a set of unknowns, the Sundance discretization engine will traverse the mesh one maximal cell
at a time and find all unknowns associated with that cell and its facets. In a problem with multiple unknowns, say
velocity, pressure, and temperature, there can be more than one unknown associated with a cell; if so, the unknowns
are assigned in the order that their associated UnknownFunction objects are listed in the StaticLinearProblem
constructor. This scheme gives us two ways to control the unknown ordering;:
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o Cell ordering specifies the order in which cells are encountered as the mesh is traversed.

e Function ordering specifies the order in which different functions are listed within a singlecell.

6.3.1 Cell ordering

Cell ordering is controlled by giving the linear problem constructor a Cel1Reorderer object. Currently, there are
two subtypes of Cel1Reorderer,

e RCMCellReorderer uses the reverse Cuthill-McKee reordering algorithm (e.g., Saad [?]). The RCM algorithm
is a modified breadth-first search with desirable behavior during matrix factoring.

e IdentityCellReorderer uses the original ordering used by the mesh, i.e., it does no reordering.

The default is RCMCellReorderer, and it is a good general choice. You might use IdentityCellReorderer in cases
where your mesh already has a favorable cell ordering, saving the (small) expense of doing an unnecessary reorder-
ing.

The cell reordering system is extensible; your favorite reordering algorithm can be added to Sundance by writing
a new CellReorderer subtype.

The same cell reordering scheme is used for equation numbering (rows) and unknown numbering (columns).
Thus, cell reorderings are always symmetric.

6.3.2 Function ordering

Function ordering is controlled by the order in which test or unknown functions appear in the linear problem
constructor. For example, if ux, uy, and p are unknowns we can order them as: List(ux, uy, p), or as List(p,
ux, uy) or any of the other permutations. A list with the desired ordering is given to the StaticLinearProblem
constructor,

StaticLinearProblem problem(mesh, eqn, bc, List(vx, vy, q), List(ux,
uy, p), vecType);

Notice that the test functions need not have the same ordering as their corresponding unknowns: a nonsymmet-
ric ordering such as

StaticLinearProblem problem(mesh, eqn, bc, List(vx, vy, q), List(p,
ux, uy), vecType);

is possible.

6.4 Block structuring

It is possible to group unknowns and equations into blocks, in which case the stiffness matrix becomes a block
matrix with each block being an independent object.

As with function ordering, block structuring is specified by organization of the unknown and test function
arguments to the StaticLinearProblem constructor.

Array<Block> unkBlocks = List(Block(List(U, V), petraType), Block(P, petraType));

6.5 Solving the problem

Once the problem has been specified and assembled, the final step of getting the solution is quite simple to code:
one just calls the solve() method, which returns a Sundance expression containing the solution in the form of a
discrete function. The solve method can be called with no arguments, in which case the matrix type’s default solver
is used. Alternatively solve () can be called with a solver as an argument.
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6.5.1 Specification of solver

The solver is specified by passing a TSFLinearSolver object to the linear problem’s solve() method. The solver
must be one that works with the matrix representation you’ve chosen.

6.6 Accessing the stiffness matrix and load vectors

In solver development or debugging one will sometimes want to bypass the problem’s solve () method and work
directly with the problem’s stiffness matrix and load vector. These can be accessed with the getOperator () and
getRHS () methods which return a TSFLinearOperator and TSFVector respectively.

// create a SLP given mesh, eqn, and bc defined somewhere
StaticLinearProblem prob(mesh, eqn, bc, u, v);

// get the stiffness matrix and load vector as TSF objects
TSFLinearOperator K = prob.getOperator();
TSFVector f = prob.getRHS();

// write to matlab

TSFMatrixWriter writer = new MatlabMatrixWriter(‘‘myProb.m’’);
writer.write(K);

writer.write(f);
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Chapter 7

Solving Nonlinear Problems

The general approach to the numerical solution of a nonlinear PDE is iterative: find a linearized approximation
to the PDE given some apprimxate solution, and use the solution of this linear problem to obtain an improved
solution. You can write the iterative loop directly in user-level Sundance code, or you can use a nonlinear solver
package.

There are a number of ways to linearize a PDE. Picard’s method, or fixed-point iteration is often the simplest:
in any nonlinear terms, simply replace the unknown u by a previous guess u;_;. In the next iteration, the solution
of the current linear problem is used as the guess 1 in the nonlinear terms. While simple, Picard’s method often
converges slowly and in the unlucky event the solution is an unstable fixed point, the method will fail regardless
of initial guess. Newton’s method is probably the best-known method for solving a nonlinear system of equations:
use the current residual and the current gradient to compute a step that would drive the residual to zero were the
problem linear. The linearization for Newton’s method is a first-order Taylor expansion of the original PDE about
a trial solution uj. With a good initial guess Newton’s method is very fast — quadratically convergent — and it can
be modified to have good — though not always fast — global convergence properties. Variants of both these schemes
are possible; for example damping can be added to stabilize a fixed-point iteration, or an approximate Jacobian can
be used in Newton’s method.

To illustrate several approaches to solving a nonlinear PDE with Sundance, we consider the Poisson-Boltzmann
equation in one dimension

V2u = e Pu, (7.1)

The Poisson-Boltzmann equation is used to find the equilibrium potential of a large system of particles mututally
interacting with a Coulomb force. The one-dimensional equation has been applied to calculating the self-consistent
gravitational potential of the galactic disk (Spitzer [?]). The potential is assumed to be symmetric about the midplane
x = 0 and has the asymptotic behavior u ~ |x| atlarge |x| . It can be shown that the solution to the one-dimensional
problem with these boundary conditions is

u(x) = 2log cosh (2_1/23() (7.2)

In the example code, we will solve the problem on a finite interval [0, L] and use the known solution to give the
upper boundary condition u(L) = 2logcosh (27'/2L). The symmetry boundary condition at x = 0 is imposed by
setting an homogeneous Neumann BC at that point.

We will show several methods of solving the Poisson-Boltzmann equation in Sundance. The first two examples
show Picard and Newton’s method coded “inline” in user-level Sundance code. The next two show Picard and a
modified, globally convergent Newton’s method wrapped in high-level objects. Unless you are a nonlinear solver
developer or have a problem that requires a custom solver, you will most often use the high-level nonlinear solver
objects.
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Picard iteration

Assume we have a function u; that is a good approximation to the solution u. A next approximation u.; is given
by the linear equation
V2upy1 = exp (—Bug) - (7.3)

In this problem boundary conditions on the linearized equation are simply our original BCs applied to 11

Newton’s method and variants

In Newton’s method, we use gradient information to compute a step between a trial soluton uy and its update 1.
The full Newton step éu is given by
F(uy) + VF(uy) - bu = 0. (7.4)

For the Poisson-Boltzmann problem, the Newton linearization is

V2(uy + ou) = exp (—Buy) (1 — Béu) (7.5)

Linearization

It is possible to have Sundance automate the linearization of a nonlinear equation. Automated linearization is
restricted to full Newton linearization; alternative linearization schemes such as Oseen must be done by hand.

The linearization(u, u0) methods of Expr and EssentialBC are used to return a new linear expression or BC.
Linearization is always done about an initial guess u0, which must be a discrete function with the same structure
as the unknown argument u. The new expression has a new unknown function for the Newton step, or differential,
which will have the same structure as the original unknown u. Calling linearization() on a linear expression
simply obtains the same linear expression, but in terms of the Newton step for the original unknown. Note that if
either the PDE or BC are nonlinear, both must be linearized in order to transform both into equations for the Newton
step.

Example: Poisson-Boltzmann Equation

The Poisson-Boltzmann equation can be linearized as follows.

Expr eqn = Integral((grad#*u)*(grad*v) + exp(-u)*v);
EssentialBC bc = EssentialBC(top, (u - uBC)*v);

Expr linearizedEqn = eqn.linearization(u, u0);
EssentialBC linearizedBC = bc.linearization(u, u0);

The resulting expression and BC are equations for the Newton step, accessible as an unknown function through
the differential () method on the original unknown,

Expr du = u.differential();

Complete code for the solution of the Poisson-Boltzmann equation (7.1) is shown below.

#include "Sundance.h"

/** \example inlinePoissonBoltzmannlD.cpp

Solve the Poisson-Boltzmann equation \f$\nabla"2 u = e”-u$ on the unit
line with boundary conditiomns:

Left: Natural, du/dx=0

Right: Dirichlet u = 2 log(cosh(1/sqrt(2)))

The solution is 2 log(cosh(x/sqrt(2))).

* X X ¥ X ¥ X x

The problem is nonlinear, so we use Newton’s method to iterate



* towards a solution.

%

*/

int main(int argc, voidx* argv)

{

try
{

Sundance: :init (&argc, &argv);

/* create a simple mesh on the unit line */

double L=1.0;

int n = 10;

MeshGenerator mesher = new PartitionedLineMesher(0.0, L, n);
Mesh mesh = mesher.getMesh();

/* define an expression representing the x-coordinate function */
Expr x = new CoordExpr(0);

/* create a cell set representing the right boundary */
CellSet boundary = new BoundaryCellSet();
CellSet right = boundary.subset( x == L );

/* create a discrete space on the mesh */
TSFVectorSpace discreteSpace
= new SundanceVectorSpace(mesh, new Lagrange(2));

/* create an expression for the initial guess. This will be reused as the
* starting point for each newton step. Assume u(x)=x as an initial

* guess, and discretize it.

*/

Expr u0 = new DiscreteFunction(discreteSpace, x);

/* create symbolic objects for test and unknown functions. At each newton
* step we will solve a linearized equation for a step du, so our
* unknown is du. */

Expr u = new UnknownFunction(new Lagrange(2), "du");

Expr v = new TestFunction(new Lagrange(2), "du");

/* create a differential operator representing the x-derivative. */
Expr dx = new Derivative(0);

/* linearized weak equation for the step du */

Expr nonlinearEqn = Integral ((dx*u)*(dx*v) + v*xexp(-u));
Expr linearizedEqn = nonlinearEqn.linearization(u, u0);
Expr du = u.differential();

/* Dirichlet boundary condition */

double uBC = 2.0*log(cosh(L/sqrt(2.0)));
EssentialBC bc = EssentialBC(right, (u-uBC)*v) ;
EssentialBC linearizedBC = bc.linearization(u, u0);

/* linear problem for the step du */
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StaticLinearProblem prob(mesh, linearizedEqn, linearizedBC, v, du);

/* create linear solver */
TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver solver = new BICGSTABSolver(1.0e-12, 1000);

NewtonLinearization newton(prob, u0, solver);
Expr soln = newton.solve(NewtonSolver(solver, 8, 1.0e-12, 1.0e-12));

// compare to exact solution
Expr exactSoln = 2.0*log(cosh(x/sqrt(2.0)));
Expr error = new DiscreteFunction(discreteSpace, soln-exactSoln);

/* write to matlab */

string filename = "pbilD." + TSF::toString(MPIComm: :world() .getRank())
+ " dat";

FieldWriter writer = new MatlabWriter (filename) ;

writer.writeField(soln);

// compute the norm of the error

double errorNorm = (exactSoln - soln).norm(2);
double tolerance = 1.0e-4;

TSFQut: :printf ("error = Y%g\n", errorNorm);

Testing: :passFailCheck(__FILE errorNorm, tolerance);

——>

}
catch(exception& e)
{
Sundance: :handleError(e, __FILE__);
}

Sundance: :finalize();



Chapter 8

PDE-Constrained Optimization

Traditional PDE codes solve one of a specific class of PDEs with little hope of obtaining the gradients, adjoints,
or Hessians needed for PDE-constrained optimization. Even with modern PDE frameworks such as SIERRA and
Nevada, it will require considerable development effort to obtain these quantities. Thus, for optimization with
existing PDE codes, one must use the PDE solver as a “black box,”and we are restricted to relatively inefficient
optimization algorithms. One of the principal reasons for designing Sundance is to “open up” the PDE solver in
such a way that higher-performance algorithms become practical.

8.1 A PDE-constrained optimization example

We now show a simple example of how to use Sundance to set up an optimization problem with a PDE constraint.
Consider the Poisson equation with source terms parameterized with a design variable «,

Viu = > o sinkmx. (8.1)
;

A simple optimization problem is to choose « such that the state function u is a good fit to a target function . This
target-fitting problem can be posed as a least-squares problem with objective function

fe) = 5 [, (@ =07+ 3 5 82)

where R sets the control cost. As written, we could solve this problem with a pattern search method in which we
solve 8.1 for u at each function evaluation. Alternatively, we can let the states become independent variables, but
impose equation 8.1 as a constraint. In that case, we have a Lagrangian

L P VA -
L(cx,u,/\)—z/o(u i) +220ck /QVu VA ;cxk/ﬂ/\smkmc (8.3)

where A is a Lagrange multiplier. The necessary condition for solving the optimization problem is that the variations
of the Lagrangian with respect to «, u, and A are all zero.

This example is a quadratic program with an equality constraint, and the solution is obtained with a single linear
solve of the KKT system. However, the KKT system is indefinite and is most efficiently solved using a block Schur
complement method.

8.1.1 Sundance problem specification

With Sundance, all we need do to pose this problem is to write the Lagrangian using Sundance symbolic objects.
Note that in this problem, the state variable u and Lagrange multiplier A are unknown functions defined with

a finite-element basis. However, the design parameters are unknown “global” parameters, defined independently

of the mesh. In Sundance, mesh-based unknowns are UnknownFunction expression subtypes and global unknowns
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are UnknownParameter expression subtypes. To optimize performance in parallel, Sundance imposes the restriction
that all global unknowns must appear in a separate block from any meshed unknowns; that block is then replicated
across processors while blocks containing meshed unknowns are distributed. Matrix blocks mapping between the
global unknown space and a meshed unknown space are implemented with multivectors, in which each row (or
column, depending on the orientation of the block) is a distributed vector. The specification of the unknowns and
block structure for this problem is done with the following Sundance code:

Expr u = new UnknownFunction(new Lagrange(2));
Expr v = u.variation();

Expr lambda = new UnknownFunction(new Lagrange(2));
Expr mu = lambda.variation();

Expr alphal = new UnknownParameter();
Expr alpha2 = new UnknownParameter();

Expr alpha3 = new UnknownParameter();
Expr alpha = List(alphal, alpha2, alpha3);
Expr beta = alpha.variation();

TSFVectorType petra = new PetraVectorType();
TSFVectorType dense = new DenseSerialVectorType();

TSFArray<Block> unks = tuple(Block(alpha, dense), Block(u, lambda, petra));

TSFArray<Block> vars = tuple(Block(beta, dense), Block(mu, v, petra));

Once the unknowns have been specified, we can write out the objective function and Lagrangian in symbolic
form:

Expr objectiveFunction = 0.5*Integral(pow(u-target, 2.0))
+ 0.5%alpha*alpha;

Expr lagrangian = objectiveFunction - Integral ((dx*u)*(dx*lambda))
- Integral(lambda*forcing) ;

The equation set can be obtained by taking symbolic variations of the Lagrangian.
Expr eqn = lagrangian.variation(List(u, lambda, alpha));

We will solve the system using a Schur complement solver, using TSF’s block manipulation capabilities. The
user-level code to specify a Schur complement solver for a 2 by 2 block system is

TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver innerSolver = new BICGSTABSolver(1.0e-12, 1000);
TSFLinearSolver outerSolver = new BICGSTABSolver (1.0e-10, 1000);

TSFLinearSolver solver = new SchurComplementSolver(innerSolver, outerSolver);
Finally, we show complete source code for the PDE-constrained optimization example.

#include "Sundance.h"

/**
%

*/
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int main(int argc, voidx** argv)

{
try
{

Sundance: :init (&argc, &argv);

/*
Create a mesh object. In this example, we will use a built-in method
to create a uniform mesh on the unit line. In more realistic problems
we would use a mesher to create a mesh, and then read the mesh using
a MeshReader object.

*/

int n = 10;

const double pi = 4.0*atan(1.0);

MeshGenerator mesher = new LineMesher (0.0, pi, n);

Mesh mesh = mesher.getMesh() .getSubmesh() ;

/* Define a symbolic object to represent the x coordinate function. */
Expr x = new CoordExpr(0);

Expr psi = List(sin(x), sin(2.0%*x), sin(3.0%*x));

Expr target = sin(x);

/*

* Define a cell set that contains all boundary cells

*/
CellSet boundary = new BoundaryCellSet();
/*

* Define a cell set that includes all cells at position x=0.
*/
CellSet left = boundary.subset( fabs(x - 0.0) < 1.0e-10 );

/*

* Define a cell set that includes all cells at position x=1.
*/

CellSet right = boundary.subset( fabs(x - pi) < 1.0e-10 );

/*
Define an unknown function and its variation. The constructor
argument is the basis family with which the function will be
represented, in this case second-order Lagrange (nodal) polynomials.

*/

Expr u

Expr v

new UnknownFunction(new Lagrange(2));
u.variation();

Expr lambda = new UnknownFunction(new Lagrange(2));
Expr mu = lambda.variation();

Expr alphal = new UnknownParameter();
Expr alpha2 = new UnknownParameter();
Expr alpha3 = new UnknownParameter();
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Expr alpha = List(alphal, alpha2, alpha3);
Expr beta = alpha.variation();

TSFVectorType petra = new PetraVectorType();
TSFVectorType dense = new DenseSerialVectorType() ;

TSFArray<Block> unks

tuple(Block(alpha, dense), Block(u, lambda, petra));

TSFArray<Block> vars = tuple(Block(beta, dense), Block(mu, v, petra));

Expr forcing = alpha * psi;

/*
Define the differentiation operator of order 1 in direction O.
*/

Expr dx = new Derivative(0);

Expr objectiveFunction = 0.5*Integral (pow(u-target, 2.0))
+ 0.5%alpha*alpha;

Expr lagrangian = objectiveFunction - Integral((dx*u)*(dx*lambda))
- Integral(lambda*forcing) ;

Expr eqn = lagrangian.variation(List(u, lambda, alpha));

/*
Now specify the boundary conditions on the left and right CellSets.
*/

EssentialBC bc =
EssentialBC(left, uw*mu + v*lambda) && EssentialBC(right, u*mu + v*lambda) ;

/*

Create a solver object: stablized biconjugate gradient solver
*/
TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver innerSolver = new BICGSTABSolver(1.0e-12, 1000);
TSFLinearSolver outerSolver = new BICGSTABSolver (1.0e-10, 1000);

TSFLinearSolver solver = new SchurComplementSolver(innerSolver, outerSolver) ;

/*
Combine the geometry, the variational form, the BCs, and the solver
to form a complete problem.
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x/
StaticLinearProblem prob(mesh, eqn, bc, vars, unks);
prob.printRowMaps() ;

mesh.printCells();

/*
solve the problem, obtaining the solution as a (discrete) Expr object
*/

Expr soln = prob.solve(solver);

/*

write the solution in a form readable by matlab
*/
FieldWriter writer = new MatlabWriter();
cerr << "u" << endl;
writer.writeField(soln[1][0]);
cerr << "lambda" << endl;
writer.writeField(soln[1][1]);

cerr << soln[0] << endl;

/*
compute the error and represent as a discrete function
*/

Expr exactSoln = sin(x);

/*
compute the norm of the error
*/
double errorNorm = (soln[1][0] - exactSoln) .norm(2);
double tolerance = 1.0e-10;

/*
decide if the error is within tolerance
*/
Testing: :passFailCheck(__FILE__, errorNorm, tolerance);
Testing: :timeStamp(__FILE__, __DATE__, __TIME__);
}
catch(exception& e)
{
TSFQut: :println(e.what());
Testing::crash(__FILE__);
Testing: :timeStamp(__FILE__, __DATE__, __TIME__);

}

Sundance: :finalize();

}
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Chapter 9

Solving timestepping problems

Currently, Sundance has no high-level support for transient simulations. However, it is not difficult to code simple

timestepping schemes directly in Sundance.

Consider Crank-Nicolson (BE) time discretization for the transient heat equation. If we discretize in time but

leave space undiscretized for the moment, the step from u; to u;;; is given by the PDE

plus associated BCs. We can now solve this equation using Sundance, and the solution may be used as the starting

1
Uiy — U = E(Si’ [Vzui+1 + Vzui]

value for the next step.

#include "Sundance.h"
/**
* \example timeStepHeatlD.cpp
L3
* This example shows how to do timestepping in Sundance. We solve the
* transient heat equation in one dimension using Crank-Nicolson time
* discretization. The time discretization is done at the symbolic level.
* Spatial discretization is done via StaticLinearProblem, yielding system
* matrices and vectors that can be used to march the problem in time.
L3
* We solve the heat equation u_xx = u_t with boundary conditions
* u(0)=u(1)=0 and initial conditions u(x,t=0)=sin(pi x). The solution
* is u(x,t)=exp(-pi~2 t) sin(pi x).
*/
int main(int argc, voidx* argv)
{
try

{

Sundance: :init (&argc, &argv);

/* create a simple mesh on the unit line */

int n = 100;

MeshGenerator mesher = new LineMesher (0.0, 0.5, n);
Mesh mesh = mesher.getMesh();

/* create unknown and variational functions */
Expr delU = new TestFunction(new Lagrange(1));
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Expr U = new UnknownFunction(new Lagrange(1));

/* create a differentiation operator */
Expr dx = new Derivative(0);

/* the initial conditions will be uO(x,t=0) = sin(pi*x).

* create a coordinate expression to represent x, then

* create sin(pi*x), and then project it onto a discrete function. */
Expr x = new CoordExpr(0);

double pi = 4.0xatan(1.0);

TSFVectorSpace discreteSpace
= new SundanceVectorSpace(mesh, new Lagrange(1));

Expr u0 = new DiscreteFunction(discreteSpace, sin(pi*x));

/*
set up crank-nicolson stepping with timestep = 0.02. The time
discretization is done at the symbolic level, yielding
an elliptic problem that we solve repeatedly for the updated
solution at each time level.

*/

double deltaT = 0.02;
Expr cnStep = delU*(U - u0) + deltaTx(dx*delU)*(dx*(U + u0)/2.0);
Expr eqn = Integral(cnStep);

/* Define BCs to be zero at both ends */

CellSet boundary = new BoundaryCellSet();

CellSet left = boundary.subset( fabs(x - 0.0) < 1.0e-10 );
CellSet right = boundary.subset( fabs(x - 1.0) < 1.0e-10 );
EssentialBC bc = EssentialBC(left, delUx*U);

/* create a solver object */
TSFPreconditionerFactory prec = new ILUKPreconditionerFactory(1);
TSFLinearSolver solver = new BICGSTABSolver(prec, 1.0e-14, 300);

/*
put the time-discretized eqn into a StaticLinearProblem object
which will do the spatial discretization.

*/

StaticLinearProblem prob(mesh, eqn, bc, delU, U);

/*
Now, loop over timesteps, solving the elliptic problem for u at each
step. At the end of each step, assign the solution solnU into uO.
Because Exprs are stored by reference, the updating of u0 propagates
to the copies of u0 in the equation set and in the
StaticLinearProblem. The same StaticLinearProblem can be reused
at all timesteps.

*/

int nSteps = 100;



}

}

for (int i=0; i<nSteps; i++)
{

/* solve the problem */
Expr soln = prob.solve(solver);
TSFVector solnVec;
soln.getVector(solnVec);
u0.setVector (solnVec);
/* write the solution at step i to a file x/
char fName[20];
sprintf (fName, "timeStepHeat}d.dat", i);
ofstream of (fName) ;

FieldWriter writer = new MatlabWriter (fName) ;

writer.writeField (u0);
cerr << "[" << i << "]";
/* flush the matrix and RHS values */
prob.flushMatrixValues();
}

cerr << endl;

/* compute the exact solution and the error */
double tFinal = nSteps * deltaT;
Expr exactSoln = exp(-pi*pi*tFinal) * sin(pix*x);

/*
compute the norm of the error
*/
double errorNorm = (exactSoln-u0) .norm(2);
double tolerance 1.0e-4;

/*

decide if the error is within tolerance

*/

Testing: :passFailCheck(__FILE__, errorNorm, tolerance);

catch(exception& e)

{
}

Sundance: :handleError(e, __FILE__);

Sundance: :finalize();
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Chapter 10

Examples

The best way to learn Sundance is by example.

e Elastic deformation shows how to set up a multivariable problem, vector and tensor manipulation.
e Cavity flow shows several approaches to incompressible flow

e Shock tube shows how to do upwinding

10.1 Elastic Deformation

10.2 Flow in a lid-driven cavity

Incompressible viscous flow in a lid-driven cavity has been studied extensively and is used as a standard benchmark
for computational fluid dynamics algorithms and codes. See the review article by Shankar and Deshpande[?] for
recent references on computational and experimental work on this problem.

The configuration is sketched in Figure 10.1: fluid in a two-dimensional box is driven by a uniformly moving
lid. The governing equations are the incompressible Navier-Stokes equations

ou _ 1 _,
E-F(u-V)u— -Vp+ R_ev u (10.1)

V-u=0 (10.2)

where u is the fluid velocity, p is the pressure, and Re is the Reynolds number. Boundary conditions are no-slip,
and are as indicated in the figure. Since the lid is moving the fluid in contact with the lid moves with the same
velocity as the lid. The velocity on the bottom and sides is zero. There are no boundary conditions for pressure.
This leaves the system indeterminate, since equation 10.2 unchanged by adding a constant to the pressure, but it is
consistent and the indeterminacy will cause no problem for iterative solvers.

Here we will consider only the steady-state case. One can find the steady-state solution in a number of ways:
by marching the time-dependent Navier-Stokes equations forward until equilibrium is reached, or by applying a
nonlinear solver to the time-independent Navier-Stokes equations

(u-V)u=-Vp+ évzu (10.3)

V-u=0. (10.4)

In the examples that follow, we will show several approaches to solving the nonlinear steady-state problem: time-
marching to equilibrium, Picard iteration on the steady-state equations, and Newton iteration on the steady-state
equation.
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There are a number of ways to rewrite the Navier-Stokes equations, and yet more ways to discretize them. There
are many potential pitfalls in formulating a Navier-Stokes solver — the naive discretization methods are unstable,
some methods will converge slowly without specialized preconditioners, and boundary conditions are tricky — and
if you are new to the game you are advised to read and think first and code second (Gresho and Sani[?] is a good
place to start).

With Sundance, you can easily develop solvers with different formulations, discretizations, and solution meth-
ods; in this section we present four examples of Navier-Stokes solvers:

e A mixed-order discretization of the primitive equations using Taylor-Hood elements. This discretization is
stable, but gives rise to an indefinite saddle-point linear system that requires special preconditioning. In this
example we do the nonlinear solve using Picard iteration.

o A pressure-stabilized equal-order discretization using bilinear elements for both velocity and pressure. Equal-
order methods, in which the velocity and pressure are discretized with the same basis functions, are never
stable with the unmodified Navier-Stokes equations. The method is stabilized by adding a regularization
term to the Navier-Stokes equation. In this example we do the nonlinear solve using Newton’s method with
backtracking.

e A streamfunction-vorticity formulation of the Navier-Stokes equations, in which we rewrite the equations in
such a way that the incompressibility constraint is automatically satisfied and the pressure drops out. This
leads to a very elegant and well-behaved formulation; unfortunately, writing boundary conditions in three di-
mensions is difficult. In this example we converge to equilibrium by marching the time-dependent equations.

10.2.1 Mixed-order discretization of primitive formulation

Naively, one would proceed to discretize the Navier-Stokes equations by picking a basis and using it to represent
both components of velocity and the pressure in a Galerkin method. Alas, life is not so simple; the mathematical
theory behind the Navier-Stokes equations places strong constraints on the bases that are allowed for velocity and
pressure; the two bases cannot be chosen independently of one another. Choose poorly, and spurious oscillations
in pressure appear; choose poorly another way, and all your displacement “lock” to zero. The condition that must
be satisfied for stability is called the Ladyshenskaya-Babuska-Brezzi (LBB) condition, and several generations of
applied mathematicians and engineers have worked on finding basis combinations (“elements”) that satisfy the
strict demands of LBB. A summary of popular element types for Navier-Stokes and their status with respect to LBB
are given in Gresho and Sani[?]. The simplest LBB-stable element to code in Sundance is the trianglular element
P2-P1 element, also known as the Taylor-Hood element: 2nd-order Lagrange interpolation for velocity, 1st-order
Lagrange interpolation for pressure.

Now that we have a stable element, life is good, right? Not so fast. The linearized Navier-Stokes equations as

formulated discretize to a saddle-point system
B C||u| _|f
e ol Bl =l s

Such a system requires care to solve. We use a preconditioner developed for this system by Wathen, Silvester, and
Elman.

10.2.2 Pressure-stabilized equal-order discretization of primitive formulation

The Taylor-Hood discretization in the previous example required mixed-order interpolation and a specialized proe-
conditioner. Is there hope for solving the Navier-Stokes equations with equal-order interpolation, or better yet
without a specialized preconditioner? The answer is “yes” to both questions, but we will have to add an unphysical
regularization term to the incompressibility equation. We parameterize this term by a scaling factor 3; if we choose
B too large, our model is unphysical; if we choose 3 too small, we lose its stabilizing effect. So we gain simplicity
and stability, but at the price of introducing a unknown but important control parameter.

An unstabilized equal-order discretization of NS is susceptible to the checkerboard instability, in which the
pressure oscillates wildly on the scale of one element. You might think to squelch that oscillation by smoothing the
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pressure. Modify the continuity equation as follows:
V-u+e(x)Vp=0 (10.6)

where € is an as yet unspecified scaling function.
Not only have we gained stability, but the discrete form of our system is now

e 5] 1= ] w02

where both B and S are positive-definite matrices. This system can be solved quite easily by standard solvers and
preconditioners, and needs no special treatment.

10.2.3 Streamfunction-vorticity formulation

The streamfunction-vorticity formulation is In the streamfunction-vorticity formulation, we notice that any
divergence-free velocity field can be written as the curl of another vector field called the streamfunction. In two
dimensions, the streamfunction reduces to a scalar 1, and we have

_w
= (10.8)
9
1y = —% (10.9)

which is easily shown to have zero divergence. Taking the curl of the velocity field, we find an equation relating the
streamfunction and vorticity
VY =w (10.10)

We next take the curl of the Navier-Stokes momentum equation to obtain

oYow 0y ow _i

2
dy ox  0x dy ReV @ (10-11)

Notice that the pressure has dropped out of the problem, and we are left with two scalar equations for the two
scalar unknowns 1 and w.

Linearization

We will solve the nonlinear problem using Newton’s method with backtracking (e.g., Kelley [?]) and a full lin-
earization. For large values of the Reynolds number, the convergence rate of Newton’s method on this problem
proves to be quite sensitive to the initial guess. To obtain a good initial guess we will embed the Newton solver in
a continuation method, in which we solve a sequence of problems starting at small Reynolds numbers.

Expanding to first order about a trial solution [, wy], we have

V2 Yo + 8Y] = wp + sw (10.12)

and dpow 0o 1
_dpow |, dwow _ - 2
5y 3 T ox 3y 2o Viw (10.13)

Boundary conditions

Boundary conditions in vorticity-streamfunction formulations are a subtle issue. In the driven cavity problem
we have specified both velocity components at the boundary, which means we must specify both normal and
tangential derivatives of 1, or equivalently, both Neumann and Dirichlet boundary conditions for 1. In particular,
1 is constant everywhere on the boundary, and has unit flux on the top and zero flux elsewhere. There are no
boundary conditions for the vorticity w.
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Notice that the nature of the boundary conditions rules out the otherwise appealing strategy of solving equa-
tion 10.11 for w given an estimate of ¢ and subsequently using that w in equation 10.10 to obtain an updated
estimate for . This won’t work: treated as separate problems, there are too few boundary conditions on equa-
tion 10.11 and too many on equation 10.10. The equations must be considered as a single system; see Gresho and
Sani [?] for elaboration on this point.

Once we have accepted that we have to solve equations 10.10 and 10.11 as a coupled system, the immediate
followup question is how we specify these boundary conditions in Sundance. The obvious place to start is to
impose the Neumann BCs on 1) in the usual manner of assigning a value to the normal derivative in the boundary
integral. However, if we then try to apply the Dirichlet condition in the usual way,

EssentialBC dirichletBC(wholeBoundary, varPsi*psi);

we replace the weak equations for 1p on the boundary with these boundary conditions. The problem is that
varPsi on the boundary identifies exactly those same rows on which we just applied the Neumann condition. The
resolution is simple: apply the Dirichlet BC in the rows corresponding to varOmega on the boundary, which is
accomplished very simply by

EssentialBC dirichletBC(wholeBoundary, varOmega*psi);

Recall that this will replace exactly those rows including the boundary integral over Vw -7, so that we need not
include that term.

Code

10.3 A source inversion problem

Most of the PDEs presented in this guide are forward problems: given a PDE and associated BCs, we solve for
an unknown field variable. However, in some contexts the parameters of the PDE or BC are unknown and are
to be determined by minimizing some objective function. In this case, we have an inverse problem, which we
may broadly classify into parameter estimation problems in which parameters are determined by fitting a model
to experimental data, and optimal control or design problems where parameters are chosen to satisfy some desired
design criteria.

In this example, we will set up an inverse problem to determine the source of a pollutant that is being trans-
ported in a known flow field. In a more realistic problem, the flow field might also be determined as part of the
inverse problem. We begin with the forward problem: let the contaminant be released with source density p and
transported via advection and diffusion in velocity field u. The steady-state concentration of the contaminant is
given by the forced advection-diffusion equation

Pe(u-V)c=Vi+p (10.14)

We can synthesis some “experimental” data by solving the forward problem with a known source and taking mea-
surements at N sensor locations.
Choose p to minimize the objective function

N
f(p) = %Z (p) —ci)*. (10.15)

Unfortunately, this formulation is ill-posed because there will be an unknown p at every grid point, but only N;
measurements. We can deal with this problem by regularizing the source field, for instance by augmenting the
objective function with a term that penalizes large gradients in the source

1N 1
=3 Z (c(p) — i) + §|VP|2 (10.16)
1=0

Now that we have a well-posed problem, how do we proceed? One simple and very widely-used approach is to
compute the objective function from the formula above, which requires we solve the forward problem for each
choice of parameter p.

When the space of source parameters is very large, these approaches are not feasible.
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Figure 10.1: Schematic of lid-driven cavity flow problem. Boundary conditions on velocity are indicated with text

labels.
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Appendix A

Listing of user-level classes and methods

This chapter contains detailed information about user-level classes and methods. This is intended as a reference
for Sundance users rather than Sundance developers; Sundance developers should consult the Doxygen-generated
class documentation in which all classes and methods are described.

For each class, we describe

e Copy and assignment behavior.

e User-level subclasses.

o User-level member methods. Where appropriate, we will subdivide this list into groups of related methods.

e User-level global methods (if any).

A1 Symbolic objects

Al1l1 Expr

Class Expr is the user-level handle for all objects that can be used in symbolic operations, e.g. functions, constants,

and differential operators. See Chapter 2 for a guide to how symbolic mathematics is used in Sundance.

Constructors
| Constructor | Comments
Expr() Creates an empty expression

Expr(const double& value)

Creates an expression with a constant real value. Once
constructed, the value cannot be changed, so this ctor
is not appropriate for changeable constant parameters
such as design variables or timesteps. In that case, use
a ParameterExpr instead.

Expr (ExprBase* subclass)

Creates an expression by capturing a subclass pointer
into a handle.

Copy and assignment behavior

Copy behavior is shallow. The case in which an object appears on both sides of an assignment operator, e.g.,

x=x+1Yy,

is handled specially. See subsection 2.3.1 for more information.
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Expression subclasses

The user-level expression subtypes are listed below.

| Constructor | Comments |
CoordExpr(int d, const string& name) function evaluating to the d-th coordinate
Derivative(int d, int order=1) Partial differentiation operator of order=order in
direction d.
TestFunction(const BasisFamily& basis, Test function with the specified basis

const string& name)
UnknownFunction(const BasisFamily& basis, | Unknown function with the specified basis
const string& name)
DiscreteFunction(const Function discretizing the value of expr onto the
TSFVectorSpace& space, given discrete space

const Expr& expr,
const string& name)
ParameterExpr(const double& value) Changeable parameter. This will be treated as a
constant over the mesh, but can be changed be-
tween steps in a computation.

Overloaded math operators (methods)

The following math operations are defined between expressions. In the case of binary operators, both arguments
must have a compatible list structures as described in the comments below.

Return type | Method | Comments |

Expr operator-() const Unary minus, returns additive inverse

const Expr& | operator+=(const Expr& other) | Reflexive addition. Both operands must have
identical list structures.

const Expr& | operator-=(const Expr& other) | Reflexive subtraction. Both operands must have
identical list structures.

const Expr& | operator*=(const Expr& other) | Reflexive multiplication. The meaning of this op-
eration depends on the list structure of this and
other. If either this or other is scalar-valued,
the product means multiplication by a scalar. The
multiplication operator is also meaningful when
the two operands have a list structure such that
multiplication can be interpreted as a tensor con-
traction operation (generalized dot product).
const Expr& | operator/=(const Expr& other) | Reflexive division. The right operand must be a
scalar.

Overloaded math operators (global methods)

See the comments in the previous section A.1.1 for restrictions on the list structure of operands to binary operators.
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| Return type | Method | Comments
Expr operator+(const Expr& a, const Expr& b) | Addition
Expr operator-(const Expr& a, const Expr& b) | Subtraction
Expr operator*(const Expr& a, const Expr& b) | Multiplication
Expr operator/(const Expr& a, const Expr& b) | Division
Expr pow(const Expr& a, const double& p) Raise to scalar power
Expr sqrt(const Expr& a) Square root. Argument must be a positive scalar.
Expr exp(const Expr& a) Exponential. Argument must be a scalar.
Expr log(const Expr& a) Natural logarithm. Argument must be a strictly
positive scalar.
Expr sin(const Expr& a) Trigonometric sine . Argument must be a scalar.
Expr cos(const Expr& a) Trigonometric cosine. Argument must be a scalar.
Expr tan(const Expr& a) Trigonometric tangent. Argument must be a
scalar.
Expr sinh(const Expr& a) Hyperbolic sine. Argument must be a scalar.
Expr cosh(const Expr& a) Hyperbolic cosine. Argument must be a scalar.
Expr tanh(const Expr& a) Hyperbolic tangent. Argument must be a scalar.
Expr fabs(const Expr& a) Absolute value. Argument must be a scalar.
Probing values at a cell or point
| Return type | Method | Comments |

| ExprValue

| average(const Celld cell) const | Returns average value over a cell |

Definite integrals and norms

| Return type | Method | Comments
double norm() const Returns L? norm
double norm(int p) const Returns L? norm
double maxNorm() const Returns L* norm
double norm(const CellSet& region) const Returns L? norm computed over a subdomain de-
fined by the cell set region
double norm(int p, const CellSet& region) comst | Returns L’ norm computed over a subdomain de-
fined by the cell set region
double maxNorm(const CellSet& region) const Returns L* norm computed over a subdomain
defined by the cell set region
Listing
| Return type | Method | Comments |
const Expr& | operator[](int i) const Returns read-only reference to i-th element
Expr& operator[] (int 1) Returns writeable reference to i-th element
int length() comnst Returns number of entries in the current level of
list
int size() const Returns total number of entries in list
Expr append(const Expr& other) | Puts the argument expr at the end of the list.

A.1.2 BasisFamily

Class BasisFamily is used to specify the basis function used in defining a discrete, unknown, or test function.
Currently, the only subtype implemented is Lagrange which represents the family of Lagrange interpolants. There
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are few user-level methods; at the user level this class’ role is as a specifier of basis type, and it appears only as an
argument to constructors of functions and vector spaces.

Copy and assignment behavior

Copies and assignments are shallow.

BasisFamily subclasses

| Constructor | Comments |
Lagrange(int order) | Lagrange interpolation with polynomial or-
der=order.
User-level methods
| Return type | Method | Comments |

| XMLObject | toXML() const | write XML representation |

A.1.3 QuadratureFamily

Class QuadratureFamily is used to specify the family of quadrature rule used in integrating a weak form or doing
a definite integral or norm of an expression. Currently, the only subtype implemented is GaussianQuadrature
which represents the family of Gaussian quadrature rules. There are few user-level methods; at the user level this
class’ role is as a specifier of quadrature type, and it will appears only as an argument to weak form and boundary
condition constructors and integral and norm functions.

Copy and assignment behavior

Copies and assignments are shallow.

QuadratureFamily subclasses

| Constructor | Comments |

| GaussianQuadrature(int order) | Gaussian quadrature of order=order. |

User-level methods

| Return type | Method | Comments |
| XMLObject | toXML() const | write XML representation |

A.2 Geometric objects

A.2.1 Mesh

Class Mesh is Sundance’s unstructured mesh object. In most Sundance problems your interaction with the Mesh will
be very limited: you will generally read it using a MeshReader’s getMesh () method, and then pass it as an argument
to functions that need it. You'll rarely need to call Mesh methods.

Copy and assignment behavior

Copy behavior is shallow.
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Subclasses

Mesh has no subclasses.

Constructors
| Constructor | Comments |
Mesh() Creates empty mesh

Mesh(int dim) | Creates empty mesh of spatial dimension dim

User-level methods

| Return type | Method | Comments |

int spatialDim() const returns the spatial dimension of the mesh

int numPoints() const returns the number of points in the mesh

int numCells(int d) const | returns the number of cells of dimension d in the
mesh

void printCells() const Writes a whole bunch of information about the
mesh to standard error. This is sometimes useful
for very low-level debugging.

Methods for creating a mesh

These methods are necessary only if you are generating a mesh by hand or writing your own MeshReader subclass.

| Return type | Method | Comments |
int addPoint(const Point& point, | Adds a point to the mesh. Optional arguments
int  ownerProcID=0, const | specify the processor that owns the point as well

Array<int>& sharerProcID, int | as a list of processors that need the point.
globallndex=-1)
Cell createMaximalCell(const ~ Cell- | Adds a maximal cell to the mesh. Any facet cells
Factory&  cellFactory, const | are created during the course of this operation.
string& label, int ownerPro-
cID=0, int globallIndex=-1)

A.2.2 MeshReader
Copy and assignment behavior

Copy behavior is shallow.

User-level methods

| Return type | Method | Comments |
[ Mesh | getMesh() const | Returns a mesh |

MeshReader subclasses

| Constructor | Comments |

ShewchukMeshReader (const string& filename) | Reader for Shewchuk’s Triangle format[?]. Ex-
pects to find the mesh in the files filename.poly
and filename . ele

ExodusMeshReader(const string& filename)
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A.2.3 MeshGenerator
Copy and assignment behavior

Copy behavior is shallow.

User-level methods

| Return type | Method | Comments

| Mesh

| getMesh() const | Creates and returns a mesh |

MeshGenerator subclasses

. LISTING OF USER-LEVEL CLASSES AND METHODS

| Constructor

Comments

LineMesher(double a, double b, int n)

Creates and returns a uniform mesh with n ele-
ments on the line segment [a, b].

RectangleMesher (double ax, double bx,
int nx, double ay, double by, int ny)

Creates and returns a uniform triangular mesh
with 1, by 1, elements on the rectangle [ay, b,] ®

[ay, by].

RectangleQuadMesher (double ax, double bx,
int nx, double ay, double by, int ny)

Creates and returns a uniform quadrilateral mesh
with 1, by 1, elements on the rectangle [ay, b,] ®

[“yf by]‘

A.2.4 CellSet

Class CellSet represents a set of cells, and is used to specify the cells on which an equation or boundary condition
will be applied or on which an integral or norm will be computed. A CellSet object is not in itself a list of cells,
rather it is an abstract rule that can be used to identify the desired cells. For simplicity, however, we will usually
talk of it as if it were a set rather than a rule used to identify a set.

Copy and assignment behavior

Copy behavior is shallow.

Cell set subclasses

| Constructor | Comments |
MaximalCellSet () set of all cells with dimension equal to D, the spa-
tial dimension of the mesh
BoundaryCellSet () set of all D — 1-dimensional cells on the boundary
LabeledCellSet (const string& label) | setof all cells having a given label

User-level methods

| Return type | Method

| Comments

CellSet operator+(const CellSet& other) const Union operator, returning a cell set that is the set
union of this and other

CellSet operator&&(const CellSet& other) const Intersection operator, returning a cell set that is
the set intersection of this and other

CellSet subset (const LogicalExpr& filter) const | Return a new cell set defined by applying the
given filter to this cell set.

XMLObject | toXML() const Return an XML representation of this object
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A.2.5 Cell
Copy and assignment behavior

Copy behavior is shallow.

Cell subclasses and constructors

There are no user-level cell subclasses or constructors. Cells are constructed only inside the createCell () method
of Mesh.

User-level methods

| Return type | Method | Comments
int numFacets(int dim) const Returns the number of facets of dimension dim
const Cell& | facet(int dim, int index) const Returns the index-th facet of dimension dim
int numCofacets(int dim) const Returns the number of cofacets of dimension dim

const Cell& cofacet (int dim, int index) comnst | Returns the index-th cofacet of dimension dim
const Point& | point(int index) const Returns the index-th node




