
The Importance of Translucence in Mobile
Computing Systems

MARIA R. EBLING, BONNIE E. JOHN and M. SATYANARAYANAN
Carnegie Mellon University

Mobile computing has been an active area of research for the past decade, but its importance will
increase substantially in the decade to come. One problem faced by designers of mobile systems
is that of maintaining the illusion of connectivity even when network performance is poor or non-
existent. The Coda file system uses its cache to maintain this illusion. Extensive experience with
the system suggests that, although users find the functionality provided by the system extremely
valuable, new users face an arduous learning curve and even experienced users are sometimes
confused by the system’s behavior. The fundamental problem is that the lack of a strong network
connection causes the system to violate a key property of caching: transparency. To overcome this
problem, we have built an interface, called the CodaConsole, that makes caching translucent to
users through controlled exposure of cache management internals. The interface exposes critical
aspects of caching to support the mobile user while hiding noncritical details to preserve usability.
This article presents the design, implementation, and usability evaluation of this interface. The
CodaConsole successfully makes caching translucent in the presence of disconnected or weakly
connected operation. The most surprising result was that novice Coda users performed almost as
well as experienced Coda users.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User
interfaces—evaluation/methodology; D.4.3 [Operating Systems]: File Systems Management—
distributed file systems

General Terms: Design, Experimentation, Human Factors

Additional Key Words and Phrases: Coda, disconnected operation, mobile computing, translucent
cache management, weakly connected operation

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA), Air
Force Materiel Command, USAF under agreement numbers F19628-96-C-0061 and F19628-93-
C-0193, the National Science Foundation Award #IRI-9457628, the Xerox Corporation, the Intel
Corporation, and the IBM Corporation. Some of the equipment used in the process of conducting
this research was acquired through the National Science Foundation Equipment Grant #9022511.
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of
Intel, Xerox, DARPA, or the U.S. Government.
Authors’ addresses: M. R. Ebling, IBM T. J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY, 10598; email: ebling@us.ibm.com; B. E. John, Human Computer Interaction Institute,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213; email: bej@cs.cmu.edu;
M. Satyanarayanan, Department of Computer Science, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, PA 15213; email: satya@cs.cmu.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1073-0516/02/0300–0042 $5.00

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002, Pages 42–67.

Translucence in Mobile Computing Systems • 43

1. INTRODUCTION

Mobile users need access to information stored in a variety of places. They might
need to look up information from a corporate database, distributed file system,
or intranet. They might need to access data from the Internet or the Web.
Mobile users might also need to access information from a variety of computing
devices. These users may be using laptop computers or handheld devices. No
matter what type of device the user happens to have and regardless of how
much disk space or memory it has, people can always find a way to fill it to
capacity, making mobile information access vital to these users.

Mobile information access poses some unique problems, one of which
is that mobile clients experience a wide range of network connectivity
[Satyanarayanan 1996], from fast, reliable, and cheap networks (strong con-
nectivity) at one extreme to slow, intermittent, or expensive ones (weak connec-
tivity) at the other. Mobile clients may also experience periods of disconnection.
This problem is intrinsic to mobile computing and will not simply disappear
over time. Consequently, systems must cope gracefully with changing network
conditions. The Coda File System supports mobile access to a distributed file
system and provides mechanisms that allow the file system to adjust transpar-
ently to changing network conditions, thus insulating users from the vagaries of
network connectivity [Satyanarayanan et al. 1990]. Although the mechanisms
Coda provides are effective, they introduce a new problem: because important
information is masked, users are sometimes confused by behaviors not seen in
other systems. Although Coda explores these topics in the realm of a file sys-
tem, the lessons learned in Coda can be applied more widely, including to the
Web and to handheld devices.

Dix advocates an alternative approach that makes users aware of the state
of connectivity [Dix 1995; Dix and Beale 1996]. He argues that such systems
can afford to use more complex caching algorithms and that caching decisions
should be a cooperative activity between the system and the user. Furthermore,
he argues that transparency is precisely the wrong approach in these systems
because it hides the information that users need to cooperate effectively. He
proposes the need for systems that make users aware of appropriate informa-
tion in a low-effort, even subconscious, way that does not interfere with the
user’s primary tasks. The approach that he believes will lead to the best inter-
faces is that of adding information to points of shared focus, such as showing a
temporarily disconnected user’s cursor grayed out.

In this article, we describe how the usability of systems such as Coda can be
improved through translucent caching. This technique exposes critical details
of caching to support availability while continuing to hide noncritical details to
preserve usability. Our approach effectively introduces a shared focus, allowing
the file system to communicate directly with its users. This article begins with
a discussion of the concerns that a translucent system must consider to avoid
exposing too many details. We then present an overview of a graphical interface,
called the CodaConsole, that makes caching translucent to Coda users. We
continue with a presentation of the results of a usability study that validates our
approach. Our study confirms that translucent caching is a promising approach

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

44 • M. R. Ebling et al.

to improving the usability of highly available systems. In fact, in our study, new
Coda users performed nearly as well as experienced users.

2. BACKGROUND

The research on Coda has been extensively reported in the systems commu-
nity, but this work extends its applicability to the HCI community as well.
Because Coda’s functionality is widely known [Kistler and Satyanarayanan
1992; Mummert et al. 1995], we have chosen not to include a detailed descrip-
tion of Coda here. Instead, we refer readers looking for additional background
to ACM’s digital library where a brief overview of Coda is available [ACMDL
2002]. In addition, because readers may not be fluent in Coda terminology, we
include footnotes that define Coda terms as they are introduced. In this sec-
tion we present anecdotal experiences of Coda users. We then discuss related
work, from both the file systems and the computer-supported cooperative work
communities.

2.1 Anecdotal Experiences with Coda

The original version of Coda offered users detailed control over the contents of
the cache.1 Unfortunately, the feedback provided by the system about the cache
was minimal. Experience with the deployed system revealed that, although
experienced users found the functionality extremely useful, they continued to
be confused by the system’s behavior even after months of regular use.

What events caused confusion among experienced users? One common cause
of confusion occurred when the network conditions degraded unbeknownst to
the user. Because the client transparently transitioned from strong to weak
connectivity, users continued to expect strongly connected behavior when, in
fact, the system was only capable of providing weakly connected behavior. In
particular, users expected their updates to appear on the servers immediately.
When a user noticed that the servers did not have the latest changes (e.g., those
made from another machine), the user understandably became very concerned
for the safety of those updates. Multiple users observed this particular problem
(often multiple times).

Another procedure common among experienced users highlights the diffi-
culty that even they have in preparing their caches for disconnected and weakly
connected operation. Once they are done preparing, they have difficulty deter-
mining whether their hoarded2 data are available for use. Because the penalty
for discovering missing files during disconnection is high, experienced users
frequently test their preparation by disconnecting and attempting to access
their work before actually leaving their offices. This strategy allows them to
reconnect and correct any problems they encounter, but it imposes a great bur-
den. From this evidence, it is clear that users need better feedback regarding
what data are available for use.

1The cache stores a subset of the files maintained by the Coda servers.
2Coda allows users to specify files and directories that the cache manager should maintain in the
cache at all times, if possible. These files and directories are called hoarded data.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 45

The fundamental problem seems to be that Coda takes an application-
transparent approach. However, as much as we might like systems to exhibit
the same behaviors when operating over a modem as they do when operating
over an Ethernet, they simply cannot do so. A missing file requested during a
period of weak connectivity can take a substantial amount of time to fetch. No
system today can avoid paying this penalty and no system can maintain the
illusion of connectivity in the face of such penalties.

One challenge then is to explain the system’s behavior to its users. Coda’s
application-transparent approach necessarily introduces modal behaviors,
which have long been known to cause usability problems [Tesler 1981]. These
modal behaviors, which are critical to supporting network-oblivious applica-
tions, cannot simply be removed. The key to solving the usability problems
such behaviors introduce is exposing them to users in meaningful and appar-
ent ways [Monk 1986]. A second challenge is to provide users with control over
how network resources get used. A good example of how users have demanded
this control is the ability of Web browsers to disable the automatic download
of images. Users of weakly connected file systems need controls akin to those
provided by Web browsers.

2.2 Related Work

Although much work has been done on highly available file systems [Alonso
et al. 1990; Huston and Honeyman 1993, 1995; Kistler and Satyanarayanan
1992; Kuenning and Popek 1997; Mummert et al. 1995; Tait et al. 1995], few
systems address their usability. Certain major pieces of related work are im-
portant to mention. The first is a system from Columbia University, which we
call transparent analytic spying [Tait et al. 1995]. Tait and his colleagues pro-
vided a simple user interface that offered users the ability to aggregate hoarded
data and to control which aggregates were hoarded, but this interface offered
no feedback to users and no studies evaluating the usability of the interface
were ever done. The second is a system from UCLA, called Seer [Kuenning and
Popek 1997]. Seer applied multidimensional clustering to hoard files automat-
ically. This system required almost no intervention by the user and the results
were quite impressive. Seer’s weakness was in its inability to build clusters of
files that were meaningful to users. This weakness makes it difficult to expose
meaningful availability information to the user.

File systems are not the only systems to face the vagaries of network con-
nectivity and to consider ways in which to expose connectivity to their users.
Researchers working in the area of CSCW have also been considering these
problems (e.g., Cheverst et al. [1999], Davies et al. [1996], Friday et al. [1999],
Pascoe et al. [1998a,b], Rodden et al. [1998], Walker [1998], and Wax [1996]).
It is this work that offers the most insight into the problem at hand. One piece
of work deserves particular mention. Cheverst and his colleagues exposed the
connectivity of field engineers in a collaborative application, called MOST, that
provided access to safety-critical information regarding a power plant [Davies
et al. 1996]. From their initial evaluation of the interface, they learned that en-
gineers felt that the interface provided insufficient information concerning the

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

46 • M. R. Ebling et al.

constraints imposed by the mobile communications environment. For example,
engineers felt the interface did not give them an appreciation of the fact that
establishing a connection with a remote user could take a considerable amount
of time (over 10 seconds). They also felt that the interface did not give them
feedback regarding the state of communication with other group members.
Finally, they wanted to have control over the costs associated with their group
collaborations. A subsequent interface gave users feedback regarding the state
of connectivity and also gave them control over the associated costs by allowing
the engineers to specify quality of service requirements on a per-user as well
as per-group basis [Cheverst et al. 1999]. As with our work, these researchers
also found the need to make the state of connectivity visible to their users and
to give them more control over certain aspects of the system.

2.3 Summary

Anecdotal evidence suggested that even experienced users were having diffi-
culty in understanding Coda’s behavior as well as in exploiting its features.
Our approach to addressing these problems is to make aspects of the system
translucent, rather than transparent, to users. This approach is in direct con-
trast to other file system projects that tried to further hide the details of the
system from the users or simply tried to add a graphical representation of the
existing controls. It is more similar to the approach taken by the MOST project,
which used translucence to set the expectations of field engineers and to give
those engineers control over the system. It is also consistent with the position
taken by Dix that systems need to give feedback in ways that do not interfere
with users’ primary tasks. However, Dix assumes that systems interact directly
with the user. Because file systems do not typically interact directly with the
user, our approach introduces a shared focus, which we call the CodaConsole.
The next section presents the design rationale for the CodaConsole.

3. DESIGN RATIONALE

Before adding a shared focus to make a system translucent, one must identify
which aspects of the system to expose to users as well as consider the risks
involved in exposing those details. In this section, we summarize the rationale
for those details the system exposes to the user. We then discuss the risks
involved in exposing those details and the steps we took to minimize the impact
on the user.

Our goals for translucent caching were many. We wanted to eliminate the
confusion users experienced when certain events occurred. We wanted to give
users the ability to influence the way in which the system handled their re-
quests, when appropriate. We wanted to allow users to prepare easily for dis-
connected and weakly connected operation and to be confident in their prepa-
ration. Furthermore, we wanted to teach users about Coda and its operation
in a reasonable amount of time. In this section, we explore these issues in
more detail. In later sections, we operationalize these goals for the purposes of
evaluation.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 47

3.1 What Aspects to Expose?

In identifying the details to expose to users, we considered two questions:

—What system behaviors must be brought to the user’s attention?
—What aspects of the system do users need and want control over?

The answers to these questions were based upon our users’ experiences with
the original Coda deployment and greatly influenced the design of the interface
presented in Section 4.

Certain system behaviors introduce confusion. For example, when the state
of network connectivity changes, the system adapts by changing its behavior.
This adaptation is completely transparent to the user in most situations. Under
certain conditions, however, the transparency of this transition is problematic.
In particular, if the change in network connectivity is not apparent to the user
and if the user is operating in an environment in which he or she can detect
the change in system behavior (such as in the example concerning the delayed
propagation of file changes given in Section 2.1), then the user can become con-
fused by these behaviors. Errors can also cause confusion. For example, when
users’ tokens3 expire, users no longer have the authority to read or write their
own files. Because the file system has no direct interaction with the user, it must
return a UNIX-compatible error message to the application (in this case, per-
mission denied). If the application simply passes that error message through
to the user, it will mislead the user to search for incorrectly set permissions
rather than expired tokens. Coda needs a better way to bring error conditions
such as these directly to the user’s attention. We concluded that an interface
that brings error conditions to the user’s attention and that sets user expecta-
tions appropriately could greatly improve the usability of Coda and of similar
systems.

The second question, regarding giving users control over aspects of the sys-
tem, posed more difficulty because users of the original system had little control
over the system so we had less data for what was difficult or desired. Our ap-
proach to this question was to examine resources scarce enough to warrant
users spending the time and effort necessary to control them. For the mobile
user, these resources include cache space (the only aspect of the original sys-
tem users had any control over), network bandwidth, and energy consumption,
although we focused only on the first two. With respect to cache space, our con-
clusions were that users required assistance preparing their caches for discon-
nected or weakly connected operation and that they needed feedback regarding
the availability of their data (to prevent the need for practice disconnections,
as described in Section 2.1). With respect to network resources, our conclusions
were that users required control over whether missing files are fetched dur-
ing weakly connected operation (either on demand or via a hoard walk) and

3A token authenticates the user to the file servers (similar to Kerberos tickets [Steiner et al. 1988]).
Tokens are obtained in a process similar to logging in and are valid only for a limited period
(by default, 25 hours). After this time, users must reauthenticate to gain continued access to the
system.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

48 • M. R. Ebling et al.

that they needed control over whether reintegration4 takes place and, if so,
how much.

3.2 What Are the Risks?

Exposing the details of caching to the user is a risky proposition. Exposing too
much detail could require the user to spend so much time managing the cache
that it detracts from the user’s productivity—defeating the entire purpose of
the system.

The primary threat to usability for a mobile client comes from critical cache
misses, requests for files that are critical to the user’s work, but that are missing
from the cache. Because critical cache misses present such a large problem to
the usability of a highly available file system, the system must minimize (or,
even better, eliminate) them.

Secondary threats result from demands the system places on the user’s valu-
able time. The system demands the user’s time in three ways. Users must invest
time in learning how to use the system and its interfaces. They must wait for
requests to be serviced, not necessarily insignificant in the face of weak con-
nectivity. Finally, they invest time offering advice to the system in hopes of
experiencing better availability.

3.3 What Are the Design Principles?

HCI researchers have studied usability for many years. In designing an inter-
face for translucent caching, we must remember to apply the results of these
efforts (e.g., Nielsen [1993] and Cooper [1995]). To minimize the risks inherent
in translucent caching, the design of the interface pays particular attention to
the following principles.

— Do no harm. Translucence should solve more problems than it introduces.
Although obvious, this point is important to keep in mind.

— Do not assume an interactive user. As a logical part of a multiuser operating
system, Coda cannot assume an interactive user. The user may start a long-
running process (e.g., a system build) and then leave the office to run an
errand, expecting the process to have finished in the meantime.

— Be unobtrusive. The user’s goal is to work, not to monitor the system. The
number of disruptions to the user’s work must be minimized.

— Balance costs with benefits. The cost of using a system that can cope with
disconnected and weakly connected operation must not outweigh the bene-
fits. Relevant costs include the time required to give the system advice and
the time required to prepare for the possibility of degraded connectivity.

4. DESIGN

The previous section explored the requirements placed upon our system as well
as the design principles we followed. From this analysis, we identified aspects

4Reintegration is the process of propagating updates made during disconnected or weakly connected
operation back to the server(s).

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 49

Fig. 1. Indicator lights give users a peripheral awareness of system state: (a) default green–yellow–
red color scheme; (b) monochrome scheme. In both views, the tokens and network indicators are
shown with a warning urgency level and the space and task indicators are shown with a critical
urgency level. All other indicators are normal.

of the system about which users need to be made aware and over which users
need to be given control. We now turn to the design of an interface that makes
caching translucent. It exposes aspects of caching and network usage to the user
while balancing the burdens placed upon them with the benefits they receive.
In this section, we give an overview of this interface.

4.1 Indicator Lights Metaphor

The primary window of the CodaConsole interface, shown in Figure 1, presents
a small number of indicator lights to the user. These indicators introduce a
point of shared focus between the user and the file system. Each indicator light
is labeled with a term familiar to Coda users, such as tokens, repair,5 and rein-
tegration. It is worth noting that our interface assumes users have a minimal
understanding of how Coda works and a familiarity with Coda terminology,
which we supply through training; it is not intended as a walk-up-and-use
interface.

Figure 1 shows two views of the indicator window: one in the default green–
yellow–red color scheme and one in a monochrome scheme. The window itself is
very small, only about 1′′ × 2′′, so we expect that users will not find it too impos-
ing and will be willing to keep it visible at all times (Be unobtrusive). Like the
indicator lights shown on the dashboard of some cars, our indicator lights use
color to encode severity. Red indicates a critical problem; yellow-orange indi-
cates a warning status; green means all is well. Unlike a car, however, the colors
used by our interface can be customized to accommodate colorblind individuals
(Do no harm). Also unlike a car’s indicators, our indicators are dynamic. To dis-
play a more detailed explanation of the problem, the user need only doubleclick
on the indicator light (Be unobtrusive). The Help button provides further ex-
planations and possible user-initiated solutions.

5In a system that supports optimistic replications, file replicas occasionally become in conflict.
These conflicts are corrected through a process Coda calls repair.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

50 • M. R. Ebling et al.

In the sections that follow, we describe the behavior of each indicator light.
Due to space limitations, we cannot show the details of every interface screen.
Interested readers are referred elsewhere [Ebling 1998].

4.2 Control Panel

In actual fact, the control panel is not an indicator light. It is always green.
Like the control panel in the Windows® environment, it allows the user to con-
figure the system. One configuration panel allows users to change the colors
used in the indicator lights. Figure 1 shows two possible choices: monochrome
and red–green–yellow. In addition, users can specify how they should be alerted
to the various events. For example, when their tokens expire, should the user
be notified? If so, what is the urgency of this event? Should the system sim-
ply change the indicator’s color? Should it beep? Should it flash the indicator?
Should it pop up the dialog window? By giving users control over whether
and how they are alerted to each event, the interface can be unobtrusive
(Be unobtrusive) and avoids annoying the user with irritating alerts and un-
interesting events (Do no harm).

4.3 Tokens

The tokens indicator keeps users informed about the state of their authenti-
cation. If the tokens indicator is green, then the user is authenticated to the
system. Yellow indicates that the user’s authentication has expired and red
indicates that some activity, such as a file request, is waiting for the user to
obtain a token. This indicator addresses a problem described in Section 3.1.

4.4 Space

The space indicator alerts users to various space problems. If the user were
to doubleclick on the space indicator light, a window similar to the one shown
in Figure 2 would appear. This window provides three gauges that show the
state of different areas of space important to the cache manager’s operation. For
example, this indicator can show users when they have requested that more
data be hoarded than can fit in their cache.

4.5 Network

The network indicator light alerts users to the state of the network connection.
In effect, it tells the user whether the system is operating strongly connected,
weakly connected, or disconnected to any servers. This indicator presents some
difficulties because a client can be operating strongly connected with respect
to one server, weakly connected with respect to another, and disconnected with
respect to a third. We handled this problem conservatively. If the system is
operating disconnected with respect to one or more Coda servers, then the indi-
cator shows red. If it is operating weakly connected with respect to one or more
servers but strongly connected to all others, then it shows yellow. Otherwise, it
shows green.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 51

Fig. 2. This space information window might appear after the user doubleclicks on the space
indicator shown in Figure 1. The gauges shown in this window indicate the current state of three
separate space areas important to the cache manager. The top gauge shows the state of the Coda
cache (e.g., 70% of the cache contains hoarded data). The middle gauge shows the state of the local
disk partition containing the cache. The bottom meter shows the state of RVM space, a critical data
structure internal to the cache manager. The user can get help in understanding the problem and
identifying solutions by clicking on the Help button in the lower left-hand corner.

4.6 Advice

The system asks for user advice on occasion. When such a request arrives, the
advice indicator changes color to show whether a user’s request is waiting for
the advice result. The indicator changes to red if the advice request is delaying
a request made by the user and to yellow if the advice request is delaying a
background request made by the system. Because the user is frequently waiting
for the completion of such requests, the default configuration for advice requests
is to pop up the dialog box on the user’s screen.

These requests allow users control over the use of network resources, the
need for which was discussed in Section 3.1. For example, Coda requests advice
from the user when a requested file is missing from the cache during a period of
weak connectivity. In most cases, a user would rather be asked whether a file is
important before being made to suffer a long fetch delay. However, simply pop-
ping up a dialog box on each cache miss is unsatisfactory for numerous reasons.

Ideally, the system could distinguish those files for which users are willing to
wait from those for which they are not. We hypothesize that we can model user
patience and that this model depends upon just two things: the importance of
the file and the expected fetch time [Mummert et al. 1995]. On a cache miss, the
cache manager first invokes the model with the file name, current bandwidth,
and other system information as parameters. If the model suggests that no
user interaction is needed, the miss is serviced transparently. Otherwise, the
system requests advice from the user. If no response is received with a timeout
period (Do not assume an interactive user), the system proceeds with servicing
the miss. If such a model can predict the user’s willingness to wait with rea-
sonable confidence, it could reduce the frequency with which it requests advice
during weak connectivity, thereby reducing the burden of translucent caching
and balancing its costs with its benefits.

Although research in the area of response time delays (e.g., Thadhani [1981],
Barber and Lucas [1983], Lambert [1984], Martin and Corl [1986], Teal and

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

52 • M. R. Ebling et al.

Rudnicky [1992], and O’Donnell and Draper [1996]) would seem to be relevant
to this problem; in fact it is not. These studies typically examine the effect of
response times of all commands issued by the user and involve short delays
(typically under 3 seconds). In contrast, cache misses should be an infrequent
occurrence in Coda (or it would be unusable in a disconnected environment),
but they may be quite lengthy (proportional to the size of the missing file)
and unpredictable (if the network is intermittent). Thus we are left with the
difficulty of determining the threshold above which a delay due to a cache miss
should be brought to the user’s attention. Shneiderman [1998], in his well-
known textbook, states that delays beyond approximately 15 seconds are clearly
disruptive, but this result does not take into account the importance of the file.
Johnson’s [1995] work in applying the concept of marginal utility to the problem
of retrieval delays on the Web seemed particularly promising until we realized
that the utility of a Coda file is often known whereas the utility of a Web search
engine hit is frequently unknown. We therefore define an initial model of user
patience.

Our initial model of user patience is based on the conjecture that patience is
similar to other human processes such as vision and hearing, whose sensitivity
is logarithmic [Cornsweet 1970]. Our model accounts for the time necessary for
the user to respond to the advice request (through the use of a keystroke-level
model, a form of GOMS analysis [Card et al. 1983]). Because we hope future
research will offer more accurate models, we encapsulated our model into a
single module to allow our simple model to be replaced easily with a more
advanced one. Designing and validating a user patience model is a challenging
and open-ended problem.

Figure 3 illustrates two different views of our user patience model. In View
(a), we show the amount of time τ a user would be willing to wait for files of
various hoard priorities according to our model. For illustrative purposes, we
show only priorities up to 500, although they may actually be as high as 1000.
(Note that, with the CodaConsole, users never see hoard priorities.) To make
the model more concrete, View (b) shows τ expressed in terms of the size of the
largest file that can be fetched at a given bandwidth. For example, 60 seconds
at a bandwidth of 64 Kb/s yields a maximum file size of 480 KB. Each curve in
this figure shows τ as a function of P for a given bandwidth. For both views,
in the region below the curves, cache misses are transparently handled and
preapproval is granted automatically during hoard walks. In the region above
this curve, the system pops up a dialog box asking the user if she wants the
system to fetch the file, but approval is assumed if the user does not respond.

The curves shown in Figure 3 predict that users would be willing to wait
indefinitely for sufficiently important files. Clearly, this is not true. Recalling
Shneiderman’s statement about delays, we decided to present any delay greater
than 15 seconds to the user. This maximum delay threshold is also shown in
the figures. Of course, this value is a parameter and easily changed as we learn
more about user patience and as we develop better models. Thus the function
employed by the cache manager is

τ = min(15, α+βeγP).

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 53

Fig. 3. User patience model. In both views, the hoard priority is shown on the X-axis. (a) Maximum
hoard priority shown is 500 and the Y-axis shows the number of seconds the model predicts the
user would be willing to wait. Any files that can be fetched in fewer seconds would automatically
be fetched. (b) Maximum hoard priority is 1000 and the Y-axis shows the maximum size file the
model predicts the system should automatically fetch. Each curve in this view represents a different
network bandwidth. The area below the curve represents those objects that would be automatically
fetched; the area above the curve represents those that require user intervention. (Parameter values
for both views were α= 6, β = 1, γ = 0.01.)

Asking users for permission before fetching a file differs from the standard
HCI technique of giving users a button to cancel an operation if they decide
it is taking too long. Although the more typical approach is appropriate in
many, if not most, situations, it is not appropriate in all situations. For example,
if a user is charged for network usage on a per-packet basis, the user may

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

54 • M. R. Ebling et al.

want to approve network usage before costs are incurred. Similarly, military
scenarios may dictate that ground personnel behind enemy lines approve all
communication. Our approach explores a different part of the design space and
does not preclude other approaches.

4.7 Hoard Walk

During strongly and weakly connected operation, the system periodically per-
forms a hoard walk. Hoard walks ensure that the current cache contents match
the current hoarding requirements. For example, a request to view a large (but
unhoarded) file could displace a hoarded file. The hoard walk indicator turns
yellow to show that a hoard walk is in progress, but turns red to show that a
hoard walk has stalled pending user advice. The advice indicator would also
turn red to show the impending advice request. The hoard walk advice request
allows users to control how much data actually get fetched during a hoard walk.
As with all advice requests, the request will timeout after a period of time, al-
lowing the hoard walk to continue in the absence of an interactive user.

4.8 Reintegration

After a period of disconnected operation, the Coda client must perform a rein-
tegration. This process updates any changes made locally with the data stored
on the servers. The indicator turns yellow when a reintegration is in progress.
It turns red when a reintegration is pending but cannot proceed without the
user’s tokens (in this case, the tokens indicator would also turn red). This indi-
cator light addresses certain usability problems that we observed (Sections 2.1
and 3.1). The first occurred when users failed to authenticate after a period
of disconnection, preventing their updates from being reintegrated as was ex-
pected. The second occurred when a weakly connected client delayed updates,
storing them locally pending reintegration. Although this was the proper be-
havior, when it occurred while the user was connected on an overloaded LAN,
the user might have noticed the updates missing on the servers and become con-
cerned. By indicating that the client is operating weakly connected and that
a reintegration is pending, users are better able to understand the system’s
behavior. The design of the interface [Ebling 1998] also specifies how the
user could be given control over the extent of reintegration as discussed in
Section 3.1, but this aspect was never implemented.

4.9 Repair

Coda’s use of optimistic replication6 implies that occasionally file updates will
conflict with each other. When this happens, the file is said to be inconsis-
tent. Sometimes the system is able to resolve these conflicts automatically, but

6Optimistic replication is a term used to describe a number of replication techniques. Each of
these techniques trades the possibility of inconsistencies for increased availability by allowing the
possibility that updates could be made concurrently, resulting in conflicts that could require manual
intervention to resolve. Optimistic replication is commonly used in mobile computing, where more
pessimistic alternatives are perceived as sacrificing too much availability.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 55

Fig. 4. This task information window might appear if the user were to doubleclick on the task
indicator shown in Figure 1. The top section of this window shows the current state of the cache
space. The middle section presents a list of all tasks the user has defined. The bottom section shows
which tasks the user has hoarded. For each hoarded task, the window shows the current priority
(1 being most important) as well as its current availability. Note that task priorities are automati-
cally converted to hoard priorities used internally by the cache manager and in the user patience
model discussed previously. The availability of a task is presented in the form of a gauge show-
ing the percentage available; the color of the gauge indicates if it is currently available (green) or
not (red).

occasionally the system requires the user to manually repair these conflicts
[Kumar 1994]. When such a repair is required, the user is alerted using the re-
pair indicator light (e.g., it turns red). The design of the interface [Ebling 1998]
specifies how Kumar’s repair tool could be incorporated into the CodaConsole,
but this aspect was never implemented.

4.10 Task

The CodaConsole allows users to define and hoard tasks. A task is a group of
related files and directories that the user needs to perform some unit of useful
work. For example, to write a paper, the user might need the directory contain-
ing the paper as well as programs associated with the editor and formatter he
plans to use.

The task indicator gives users feedback about what tasks they can perform
locally. If the task indicator is green, then all the user’s hoarded tasks are
available locally. If it is red, at least one is unavailable. If the user were to
doubleclick on this indicator, the window shown in Figure 4 might appear. This
window shows a list of all tasks the user has defined as well as a list of hoarded
tasks with meters that indicate availability.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

56 • M. R. Ebling et al.

Table I. Indicator Functional Overview

Indicator Communicates State Offers Control
Tokens ×
Space ×
Network ×
Advice × ×
Hoard Walk × ×
Reintegration × × (future)
Repair × × (future)
Task × ×

The task indicator also acts as the entry to managing the defined tasks,
including adding new tasks as well as modifying and deleting existing ones.
Doubleclicking on a task name (or on the name New) brings up another series
of windows that allow the user to modify (or define) a task by typing in the
names of the necessary component data (files and directories) and programs.
In addition, tasks can include previously defined tasks that the user can select
from a list.

The use of tasks addresses another usability problem observed in the original
Coda system (Section 2.1), the practice disconnection. By allowing users to de-
fine tasks and then showing the state of those tasks, the CodaConsole obviates
the need for this time-consuming process. Tasks also serve to raise the interface
to a level more meaningful to users. Now, rather than dealing with individual
files and directories, users communicate their needs in terms of tasks.

Although defining tasks represents a slight cost to the user, it delivers great
benefits (Balance costs with benefits). Many existing Coda users already orga-
nize their hoard profiles7 by task. By making this organization explicit in the
process, users can see what tasks are available for use. Explicit support for
tasks removes the need for users to practice disconnections, thus reducing the
burden placed on users.

4.11 Summary

In Section 3.1, we discussed the system behaviors and errors that need to be
brought to the user’s attention and the aspects of the system over which users
need to have control. This section has provided an overview of the CodaConsole
interface, illustrating how it brings information to the user’s attention and
offers the user control over the system. Table I summarizes the purpose of each
indicator light and indicates whether each indicator communicates the state to
the user or offers the user control over the system’s behavior (or both).

5. EVALUATION

Now that we have described the basic features of the interface, we turn our
attention to the evaluation. Our evaluation of the CodaConsole had both

7A hoard profile is a file containing a list of file and directory names. Users utilize these profiles to
organize the data they use frequently.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 57

summative and formative goals. Our summative goals were intended to de-
termine whether we met our design objectives. Our formative goals were used
to determine ways in which we could improve the interface.

The first objective of the test was to gauge whether the interface was meeting
our learning and performance goals, as described in Section 3. In particular, the
test focused on three major issues: the ease of mastering the interface, users’
ability to understand the feedback provided, and their ability to operate the
interface. Although our goals were not formalized in a written requirement,
our objective was a rough “80/20 rule,” where even novice Coda users could use
Coda with an accuracy of at least 80% with only 20% of the previous effort. The
original Coda interface was never formally benchmarked because training was
by apprenticeship with new users asking experienced users for help, often over a
period of weeks or months. Therefore, we stated our objectives for a think-aloud
usability test as follows, and operationalize these further in Section 5.1.4.

Ease of mastering the interface:

—Can all users complete a tutorial in approximately one hour and still maintain
80% accuracy on the exercises?

Ability to understand feedback:

—Are all users able to understand the information provided by the interface
with an accuracy of 80%?

Ability to operate:

—Are all users able to operate the interface with an accuracy of 80%?

In answering these questions, our goal was to obtain an indication of how well
people with backgrounds similar to those of Coda users would be able to perform
activities similar to those required of Coda users. Providing conclusive answers
to these questions would obviously require a study of actual Coda users interact-
ing with the production-quality interface and is beyond the scope of this work.

The second objective of our usability test was to identify areas of the inter-
face that caused confusion. Our goal was to create a list of usability problems,
categorized by their scope and severity [Dumas and Redish 1993]. We identified
these problems through observation and analysis.

5.1 Method

To answer these questions, we performed a think-aloud usability test in which
we observed a total of fourteen people interacting with the interface. The first
five participants were pilot users. The interface, materials, and/or procedures
used for these users differ somewhat from those used for the remaining nine
participants. We used these five pilot users to identify problems in our test
procedures and materials; in addition, we discovered a few problems in the
interface that we corrected prior to the start of the test. The remaining nine
participants all used the same interface, materials, and procedures. In this
section, we discuss the demographics of the participants, the procedure used
during the test, and the measurements we collected.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

58 • M. R. Ebling et al.

5.1.1 Participants. The users for our test were recruited from among
graduate students in computer science at Carnegie Mellon. Although this user
population has more experience with computers than the general public, this
population experienced problems during the original Coda deployment. Unless
we can make Coda easily accessible to this population, broader deployments
are unrealistic. Because Coda ran only under UNIX-based operating systems at
the time, all participants were required to have substantial UNIX experience.
All participants were further required to have substantial experience with
the Andrew File System [Howard et al. 1988], a broadly deployed predecessor
to Coda.

We defined a novice user as a person who knew little about Coda and had
no direct experience with it. We defined an experienced user as one who had a
Coda laptop and had operated disconnected for substantial periods of time over
the course of at least a year.

We observed a total of fourteen users: five pilot users, three novices (N1, N2,
and N4), three experienced users (E1, E2, and E3), and three who could not
be classified as either an experienced or novice user.8 The quantitative data
collected from the three novice Coda users and the three experienced Coda
users were used in our summative evaluation and are presented here. However,
because qualitative data are useful regardless of origin, all such data were used
in determining our usability findings.

5.1.2 Procedure. After obtaining appropriate permission, the experi-
menter asked the participant to fill out a brief background questionnaire, pro-
viding some basic demographic information. Once that was completed, the ex-
perimenter gave instructions and demonstrated a think-aloud protocol using
a computer game (Klondike). The participant then played Othello briefly to
practice thinking aloud. After a few minutes of practice, the participant began
a detailed interactive tutorial of the CodaConsole interface. This tutorial was
expected to require approximately one hour to complete. After a break, the par-
ticipant performed a number of exercises ranging from identifying problems to
preparing for an extended disconnected session. Users were expected to spend
approximately one hour completing the exercises, after which the participant
was to answer a brief survey evaluating the interface. Finally, the experimenter
debriefed the participant, allowing the participant the opportunity to ask ques-
tions. All materials used in this test can be found in Ebling [1998].

5.1.3 Exercise Tasks. The exercise segment consisted of 24 individual
exercises typical of those required to use the existing deployment of Coda or
expected to be required of CodaConsole users. They were proposed by the first
author and discussed with two other experienced Coda users. Each exercise

8These three unclassified users knew too much about the concepts of Coda to be novices, but had no
experience using it and therefore could not be classified as experienced. Two of these users needed
to learn more about Coda and were willing to give us feedback on the system and tutorial. The
third was originally classified as a novice, but knew more about Coda than he thought (probably
because he was the officemate of a Coda user).

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 59

consisted of one or more questions. The answer (or response) to each question
took one of a number of forms, including a short written answer, a change to a
configuration file, or a change to an interface object (such as a task definition).
Each exercise fell into one of three categories that reflected important aspects
of using Coda and/or the CodaConsole.

The first type of exercise asked participants to use the CodaConsole to answer
basic questions about the state of the system and to perform basic operations
with the interface. One question asked participants to determine which tasks
were defined, which ones were hoarded and their priorities, and which tasks
were available. Another question asked participants to describe the configura-
tion of an event and then change that configuration slightly. These exercises
allowed us to gauge each participant’s ability to understand and operate the
interface. These exercises covered nearly the entire interface. They used all the
features described in Section 4.1 except repair and reintegration because they
were not available.

The second type of exercise asked participants to define and prioritize sev-
eral tasks. The first was a debugging task; the second was for hoarding gen-
erally useful C header files; and the third was for working on a curriculum
vitae. When the participants prioritized their defined tasks, they were also
asked to describe the reasoning behind their chosen priorities. These exer-
cises allowed us to gauge each participant’s ability to define and hoard re-
alistic tasks. Each of the specific tasks chosen for the exercises was similar
to one that the first author had defined under the previous Coda interface
and representative of those defined by other experienced Coda users. None of
the participants who were experienced Coda users commented that they felt
the tasks were too easy or misrepresented the difficulties involved in defining
real tasks.

The third type of exercise asked participants to edit a file while reacting to
problems indicated by the interface. Approximately every minute, the support
code sent an event notification to the interface. The interface then indicated the
event to the user. The participant’s job was to fill out an event report whenever
she noticed a problem had occurred. These exercises allowed us to gauge each
participant’s ability to understand the feedback provided by the interface as
well as whether the interface was able to catch his peripheral attention. Each
of the events indicated to the user represented an event that actual Coda users
experience and together they covered nearly all the events supported by the
CodaConsole interface. The few remaining events were similar to other events.
All the supported events known to have caused confusion in the past were
indicated during one of these exercises.

Together, the exercises covered nearly all the functionality supported by the
CodaConsole. Furthermore, wherever appropriate, the exercises were based
upon actual use of the original Coda deployment. The least realistic aspect of
the exercises was the frequency with which the events were indicated to the
participants; if Coda indicated events at a frequency of one minute in prac-
tice, users would quickly stop using the system so that they could actually get
work done.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

60 • M. R. Ebling et al.

Table II. Summary of Learnability Results

Learnability (Time on Task, in Minutes)
User ID Tutorial Exercises
N1 61 62
N2 63 62
N4 42 66
E1 59 70
E2 59 56
E3 43 62
Avg (StdDev) 54 (±9) 63 (±4)

5.1.4 Measurements. The first measurement we collected was the time (in
seconds) required to teach users about the details of the CodaConsole interface.
We measured these times for each screen of the online tutorial.

The second measurement we collected was the time (in seconds) required for
the user to complete each exercise. We measured the time for each complete
exercise, not at the granularity of individual questions within an exercise.

The third measurement addressed the accuracy of the user’s response to each
exercise, which we recorded. A response could be a written answer to a question
or a change to a configuration file. Prior to the start of the test, the first author
created a key for the exercises. After the test, each participant’s responses were
compared to this key according to strict scoring criteria. Each correct response
scored a point.

The final measurement addressed the efficiency of the user’s response to
each exercise. We counted the number of steps taken to complete each correctly
answered exercise. A step corresponded to doubleclicking an indicator light,
clicking a button, or typing a pathname, as well as similar activities. The base-
line measurement, which we call par (as in the game of golf), was defined as
the number of steps required of an interface expert who had prior knowledge
of both the questions and the expected answers.

All but the first participant were videotaped during their session. From tran-
scripts of these tapes, we identified comments made by each user and catego-
rized them based upon content.

5.2 Results

Overall, the usability test indicates that the CodaConsole interface met all
its design goals. The average time required to complete the tutorial was
54 minutes. In approximately one hour, participants were able to understand
and operate the interface with an average accuracy of over 90%. Furthermore,
the novice Coda users were able to use the system almost as well as the ex-
perienced Coda users. Tables II, III, and IV provide summaries of the quan-
titative data collected from our users. We should note, however, that despite
the participants’ highly accurate performance, the usability test also suggested
numerous areas in which the interface could be improved. In this section, we
discuss the original objectives of the test, examining whether users were able

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 61

Table III. Summary of Understandability Results

Understandability
User ID Accuracy (% Correct) Efficiency (Score/Par)
N1 90 1.7
N2 98 1.7
N4 98 2.0
E1 97 1.8
E2 98 1.4
E3 98 2.0
Avg (StdDev) 97 (±3) 1.8 (±0.2)

Table IV. Summary of Operability Results

Operability
User ID Accuracy (% Correct) Efficiency (Score/Par)
N1 90 1.5
N2 94 1.8
N4 84 1.9
E1 97 2.4
E2 94 1.8
E3 90 2.9
Avg (StdDev) 92 (±4) 2.1 (±0.5)

to master, understand, and operate the interface. We also summarize some of
the lessons we learned regarding the usability of mobile systems.

5.2.1 Learnability. The first set of exercise questions relates to the ease
with which users learned to use the interface. Our first objective was to deter-
mine whether users could learn to use Coda and the interface in approximately
one hour. Indeed, they could, as shown in Table II. The experienced and novice
participants in the test required 55 (±9) and 54 (±8) minutes on average, re-
spectively. The fastest user, N4, took just under 42 minutes; the slowest, N2,
took just under 63 minutes. Furthermore, our other measures show that these
users learned the skills necessary to understand and operate the interface.

The qualitative data collected as part of the questionnaire administered af-
ter completion of the exercises supports these conclusions. From these data,
we learned that users felt the tutorial was basically complete. On a scale of
1 to 5 (where 5 was “very complete” and 1 was “very incomplete”), the tutorial
received an average of 3.8. Users thought the tutorial was easy to understand
(average of 4.2 out of 5, where 5 was “very easy” and 1 was “very difficult”).
Users unanimously felt that the tutorial allowed them to grasp the scope of the
interface. Finally, five out of six users felt it was presented at an appropriate
level of detail. The sixth user, one with Coda experience, felt there was too much
detail, specifically too much Coda background. Because the tutorial was written
for a novice audience, this is not surprising.

Inasmuch as the tutorial was intended for use in future Coda training, we
also wanted to identify the segments of the tutorial that participants found
difficult to understand. The basic idea behind our analysis was to examine
how much time users spent understanding each screen of the tutorial relative

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

62 • M. R. Ebling et al.

to other screens. If a screen required an unexpectedly large amount of time,
then we wanted to examine it to see if it could be made more clear. We had to
account for some complicating factors. First, each screen of the tutorial required
users to perform different actions with a mouse and/or keyboard. We addressed
this problem by estimating the amount of time needed to perform the actions
required by a given screen and then subtracting this time from the total time
spent on that screen. Second, users read at different rates. We addressed this
issue by estimating each user’s reading rate and then comparing the user’s
reading rate on each screen with her average reading rate over all screens.9

Based upon the quantitative and qualitative data we collected, the tutorial
achieved its objectives of teaching users about Coda and the interface in about
an hour. Furthermore, no serious difficulties solely attributable to the tutorial
were uncovered.

5.2.2 Understandability. A subset of the exercises explored the users’ abil-
ity to understand the information presented by the interface. Eighteen of the
twenty-four exercises address this issue. These exercises include those that
asked users to describe the current network connectivity, to identify which
tasks are currently hoarded, and similar questions as well as the exercises that
asked users to explain events notified via the indicator lights. Isolating the
users’ scores on these exercises as shown in Table III, we find that users did
extremely well. Five out of six users scored 97% correct or better, and the sixth
user scored 90% correct.

We examined the 12 event notification exercises in more detail. By doing
this, we were able to explore the users’ ability to understand the feedback pro-
vided during event notifications. For each event, users were asked to fill out an
incident report, consisting of the urgency of the event, a description of the prob-
lem, and a description of any actions that might resolve the problem. Five out
of six users explained each of the 12 incidents. The sixth user explained 11 of
the 12—this user failed to report an event that transitioned from a “bad” state
to a “good” one. Of the 71 incident reports submitted by these six users, only
three contained incorrect information. Users clearly understood the problems
indicated and what, if any, steps were possible to resolve those problems, silenc-
ing any concerns over whether users could understand the feedback provided
during event notifications.

We also examined the remaining six exercises in more detail. We found that,
with the exception of just one of these, five out of six users answered accurately.
The remaining exercise appears to have been poorly worded because, although
three users performed one or more parts of this exercise incorrectly, they all did
so differently. Our reasoning was that if the interface had been leading people
astray, we would have expected to see participants making similar errors, but
if the question were unclear or ambiguous, then we would have expected them
to interpret the question differently and, consequently, respond with different
answers. In fact, when we examined the participants’ answers in detail, this is

9The reading rate portion of this technique was inspired by a similar, but undocumented, analysis
done by Frank Lee [1999] as part of his thesis research.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 63

the behavior we found.10 We conclude that the incorrect answers were related
to the way we asked the question and not to the interface.

5.2.3 Operability. The third set of questions related to the users’ ability
to operate the interface: in particular, whether users would be able to define
and hoard tasks, provide advice to the system, and configure events. Eight ex-
ercises addressed this issue. These exercises included three that asked users
to configure events and provide advice as well as all the exercises that asked
users to define and prioritize three tasks. As shown in Table IV, five out of six
users scored 90% or better, and the sixth user scored 84%. Furthermore, the
detailed data showed that, for six out of these eight exercises, no two users
answered the same exercise incorrectly. Although these scores are very encour-
aging, users clearly had more difficulty operating the interface than they did
understanding the feedback it provided.

The most disturbing trend we observed was the fact that five out of six users
failed to hoard at least one program needed to complete a given task. Each of
these five participants hoarded a compressed file, but failed to hoard the de-
compression utility needed to read that file. Two of them also failed to hoard
editors as part of a task that required modifying a file. This observation high-
lights the need for additional help from the system in identifying programs
that are required to complete a task, but that are not salient to the user. This
lesson is one that will likely have parallels in other systems. For example,
users might also forget the plugins that support their Web browsers or word
processors.

A different metric, which also gauges the users’ ability to operate the inter-
face, compares the number of actions users needed to perform each exercise
they answered correctly with the number required by the interface designer
(par). The data shown in Table IV include this metric, called efficiency. In gen-
eral, users needed approximately twice as many actions as defined by par. They
needed a bit more than twice as many when they were required to operate the
interface and a bit less than twice as many when they simply had to under-
stand the interface. This trend is not surprising because par did not include any
problem-solving or information search, being defined on an expert who knew
the questions and answers prior to task execution. Participants confronted with
these questions would naturally engage in problem-solving and information
search to answer them, both processes that are known to be inefficient.

10The first question of this exercise was, “Please describe the current space status.” Two users
appear to have misinterpreted this question; they answered that the cache was two-thirds full.
Although this was a true statement, it did not answer the question completely; the predefined
answer in our key was “All space areas are within normal parameters.” The second question of this
exercise was, “How much disk space is dedicated to the Coda cache?” Two users also answered this
question incorrectly. We were looking for an absolute measurement: “97 MB.” One of these users
answered with the percentage of the cache that was currently occupied. Although this answer was,
in some sense, more correct, according to our strict scoring criteria, it was incorrect. The other user
gave the size of a different component. A review of the verbal protocol confirms that at least one of
these users was confused by the interface, saying “I’m not sure if that’s what’s dedicated or what’s
used.”

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

64 • M. R. Ebling et al.

5.2.4 Summary. Because the detailed examination of user data focuses on
negative results, we state again: our design met or exceeded all of its user per-
formance goals. All users completed the tutorial in about an hour and achieved
greater than 90% accuracy in understanding the interface and greater than
80% accuracy in operating it. Furthermore, the test results show that the in-
terface allowed these novice Coda users to employ Coda with approximately the
proficiency of the experienced Coda users. These novices scored 90% or better on
exercises typical of those required of Coda users. They successfully diagnosed
problems and possible solutions, defined tasks, and provided advice to the sys-
tem about hoard walks and demand fetch requests. The interface did not hinder
experienced users; in fact, their responses indicated an excitement about the
release of the interface. The interface clearly met its objective of helping novice
users while not unduly hampering experienced users.

5.3 Usability Findings

Despite its obvious successes, like every interface, the CodaConsole could be
improved. The test provided a wealth of information about how users inter-
acted with the interface and where they encountered problems, even if they
eventually overcame them. Combining all the data from this usability test (the
quantitative analysis presented above along with an analysis of the verbal
protocol and an evaluation questionnaire from all participants) resulted in 87
usability findings [Ebling 1998; Ebling and John 2000]. We classified each find-
ing according to its scope and severity, as defined in Dumas and Redish [1993].
Due to space limitations, we cannot present each of these findings here.

Of the most severe findings, many can be easily remedied, but others are
more troublesome. Some of the more interesting lessons we learned include the
following.

—We observed that users were occasionally confused by event notifications. For
example, at one point during the exercises, a task became unavailable. The
Task indicator light blinked and beeped to alert the participants, confusing
a number of them in the process. This confusion was not limited to the dura-
tion of the tutorial, so it is not simply a learning curve issue. This observation
suggests the need for a mechanism through which users can be given a writ-
ten explanation of the most recent events, a sort of log or history of recently
alerted events. This lesson would apply equally well to other applications of
indicator lights, not just Coda or mobile systems.

—As described earlier, we observed that five out of six participants failed to
include necessary programs (e.g., a decompression utility) as part of their
task definitions. We also found that, even if users defined the need for a pro-
gram, they occasionally forgot to actually hoard it at an appropriate level.
For example, two users failed to include their editing task as a subtask of
the debugging task or even as a high priority top-level task. This observa-
tion suggests the need to help users identify required programs. Again, this
lesson applies beyond Coda to any system supporting programs running dis-
connected from their server.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 65

—We observed that one user did not recognize that the hoard walk advice
request offered details in a hierarchical tree control widget. This observation
is particularly troublesome given the recent popularity of these widgets. This
problem might be solved with more explicit training, but there may well be
underlying interface issues here. Further study of these widgets would be
required to differentiate these two possible conclusions.

As indicated, each of these lessons applies beyond Coda.

6. CONCLUSIONS

The usability test we performed on the CodaConsole interface resulted in highly
positive feedback. The three users we tested, who had no previous Coda experi-
ence, were using Coda and the interface with nearly the proficiency of the three
experienced Coda users, after just one hour of training. The strategy of making
caching translucent to users was successful in this instance and may help de-
signers make other systems supporting mobility more accessible to users. Not
surprisingly, our test also provided a wealth of information that can be used to
improve the interface.

Although this research was undertaken to address the needs of the Coda
user community, we learned a number of lessons that apply more broadly to
mobile systems. Systems that support mobile computing encounter a wider
range of operating (and failure) conditions than systems that do not. Users of
these systems need more information regarding the current state of the system.
They also need more control over the ways in which precious resources, such
as network bandwidth and power, get used. This study lends credence to Dix’s
approach of making users aware of the state of network connectivity. In addi-
tion, a metalesson for systems designers to take from our work is that careful
analysis of user needs, diligent attention to design principles, and thorough
user testing do indeed produce a learnable and usable interface.

ACKNOWLEDGMENTS

We would like to thank the reviewers and editors for their many helpful com-
ments and suggestions. We would also like to thank the people who have been
involved with Coda through the years, including the many developers and users.
Your insights and feedback have been invaluable to this research. The people
who volunteered to participate in this user study deserve special thanks for do-
nating their valuable time for the benefit of our research. We would also like to
thank the administrators of Carnegie Mellon University’s User Studies Lab for
the use of their facilities, especially Sandy Esch for her dedication to making the
lab run smoothly. We also thank IBM for allowing the first author the time nec-
essary to complete this publication of her PhD research. Windows is a registered
trademark of the Microsoft Corporation in the USA and/or other countries.

REFERENCES

ACMDL 2002. The importance of translucence in mobile computing systems: Coda overview.
Available at http://portal.acm.org/tochi/archive/.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

66 • M. R. Ebling et al.

ALONSO, R., BARBARÁ, D., AND COVA, L. 1990. Using stashing to increase node autonomy in dis-
tributed file systems. In Proceedings of the Ninth IEEE Symposium on Reliable Distributed
Systems (Huntsville, Ala., Oct.), IEEE Computer Society, Los Alamitos, Calif., 12–21.

BARBER, R. E. AND LUCAS, H. C., JR. 1983. System response time operator productivity, and job
satisfaction. Commun. ACM 26, 11, 973–986.

CARD, S., MORAN, T., AND NEWELL, A. 1983. The Psychology of Human-Computer Interaction.
Lawrence, Erlbaum, Hillsdale, N.J.

CHEVERST, K., BLAIR, G., DAVIES, N., AND FRIDAY, A. 1999. Supporting collaboration in mobile-aware
groupware. Pers. Technol. 3, 1.

COOPER, A. 1995. About Face. IDG, Braintree, Mass.
CORNSWEET, T. 1970. Visual Perception. Academic, New York.
DAVIES, N., BLAIR, G., FRIDAY, A., RAVEN, P., AND CROSS, A. 1996. Mobile open systems technology

for the utilities industries. In Remote Cooperation: CSCW Issues for Mobile and Teleworkers,
A. J. Dix and R. Beale, Eds., Springer, New York, 145–166.

DIX, A. 1995. Cooperation without (reliable) communication: Interfaces for mobile applications:
Distrib. Syst. Eng. J. 2, 3, 171–181.

DIX, A. AND BEALE, R. 1996. Information requirements of distributed workers. In Remote
Cooperation: CSCW Issues for Mobile and Teleworkers, A. J. Dix and R. Beale, Eds., Springer,
New York, 113–144.

DUMAS, J. AND REDISH, J. 1993. A Practical Guide to Usability Testing. Ablex, Norwood, N.J.
EBLING, M. R. 1998. Translucent cache management for mobile computing. PhD Dissertation,

Department of Computer Science, Carnegie Mellon University, Pittsburgh, Penn.
EBLING, M. R. AND JOHN, B. E. 2000. On the contributions of different empirical data in usability

testing. In Proceedings of Designing Interactive Systems (DIS2000) (New York, August), ACM,
New York.

FRIDAY, A., DAVIES, N., BLAIR, G. S., CHEVERST, K. W. J. 1999. Developing adaptive applications:
The MOST experience. J. Integ. Comput. Aided Eng. 6, 2, 143–157.

HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYANARAYANAN, M., SIDEBOTHAM, R., AND WEST, M.
1988. Scale and performance in a distributed file system. ACM Trans. Comput. Syst. 6, 1, 51–81.

HUSTON, L. AND HONEYMAN, P. 1993. Disconnected operation for AFS. In Proceedings of the
USENIX Mobile and Location-Independent Computing Symposium (Cambridge, Mass., August),
USENIX Association, Berkeley, Calif., 1–10.

HUSTON, L. AND HONEYMAN, P. 1995. Partially connected operation. In Proceedings of the Second
USENIX Symposium on Mobile and Location-Independent Computing (Ann Arbor, Mich., April),
USENIX Association, Berkeley, Calif., 91–97.

JOHNSON, C. 1995. The impact of retrieval delays on the value of distributed information. Avail-
able at http://www.dcs.gla.ac.uk/∼johnson/papers/value.html.

KISTLER, J. AND SATYANARAYANAN, M. 1992. Disconnected operation in the Coda file system. ACM
Trans. Comput. Syst. 10, 1, 3–25.

KUENNING, G. AND POPEK, G. 1997. Automated hoarding for mobile computers. In Proceedings
of the Sixteenth ACM Symposium on Operating Systems Principles (Saint-Malo, France, Oct.),
264–275.

KUMAR, P. 1994. Mitigating the effects of optimistic replication in a distributed file system. PhD
Dissertation, Department of Computer Science, Carnegie Mellon University, Pittsburgh, Penn.

LAMBERT, G. N. 1984. A comparative study of system response time on program developer pro-
ductivity. IBM Syst. J. 23, 1, 36–43.

LEE, F. 1999. Does learning of a complex task have to be complex? PhD Dissertation, Carnegie
Mellon University, Pittsburgh, Penn.

MARTIN, G. L. AND CORL, K. G. 1986. System response time effects on user productivity. Behav.
Inf. Technol. 5, 1, 3–13.

MONK, A. 1986. Mode errors: A user-centred analysis and some preventative measures using
keying-contingent sound. Int. J. Man-Mach. Stud. 24, 4, 313–327.

MUMMERT, L., EBLING, M., AND SATYANARAYANAN, M. 1995. Exploiting weak connectivity for mobile
file access. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles
(Copper Mountain Resort, Colo., Dec.), 143–155.

NIELSEN, J. 1993. Usability Engineering. AP Professional, Boston.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

Translucence in Mobile Computing Systems • 67

O’DONNELL AND DRAPER. 1996. Temporal aspects of usability: How machine delays change user
strategies. SIGCHI Bull. 28, 2.

PASCOE, J., MORSE, D., AND RYAN, N. 1998a. Developing personal technology for the field. Pers.
Technol. 2, 1, 28–36.

PASCOE, J., RYAN, N., AND MORSE, D. 1998b. Human-computer-giraffe interaction: HCI in the
field. In Proceedings of the First Workshop on Human Computer Interaction with Mobile Devices
(Glasgow, UK, May). Available at: http://www.dcs.gla.ac.uk/∼johnson/papers/mobile/HCIMD1.
html.

RODDEN, T., CHERVEST, K., DAVIES, N., AND DIX, A. 1998. Exploiting context in HCI design for
mobile systems. In Proceedings of the First Workshop on Human Computer Interaction with
Mobile Devices (Glasgow, UK, May). Available at: http://www.dcs.gla.ac.uk/∼johnson/papers/
mobile/HCIMD1.html.

SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P., OKASAKI, M. E., SIEGEL, E. H., AND STEERE, D. C. 1990.
Coda: A highly available file system for a distributed workstation environment. IEEE Trans.
Comput. 39, 4, 447–459.

SATYANARAYANAN, M. 1996. Fundamental challenges in mobile computing. In Proceedings of the
Symposium on Principles of Distributed Computing (Philadelphia, May) 1–7.

SHNEIDERMAN, B. 1998. Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Third ed., Addison-Wesley Longman, Reading, Mass.

STEINER, J. G., NEUMAN, C., AND SCHILLER, J. I. 1988. Kerberos: An authentication service for open
network systems. USENIX Conference Proceedings (Dallas, Winter), 191–202.

TAIT, C., LEI, H., ACHARYA, S., AND CHANG, H. 1995. Intelligent file hoarding for mobile computers.
In Proceedings of the First Annual International Conference on Mobile Computing and Network-
ing (MobiCom ’95) (Berkeley, Calif., Nov.), 119–125.

TEAL, S. L. AND RUDNICKY, A. I. 1992. A performance model of system delay and user strategy
selection. In Proceedings of ACM CHI’92 Conference on Human Factors in Computing Systems
(Monterey, Calif., Addison-Wesley, Reading, Mass., 295–305.

TESLER, L. 1981. The Smalltalk environment. Byte 6, 8, 90–147.
THADHANI, A. J. 1981. Interactive user productivity. IBM Syst. J. 20, 4, 407–423.
WALKER, W. F. 1998. Rapid prototyping of awareness services using a shared information server.

ACM SIGCHI Bull. 30, 2, 95–101.
WAX, T. 1996. Red light, green light: Using peripheral awareness of availability to improve the

timing of spontaneous communication. In Proceedings Short Papers CSCW ’96.

Received May 1999; revised July 2001; accepted October 2001

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 1, March 2002.

