An Analysis of Compare-by-hash

Val Henson
Sun Microsystems

vhenson@eng.sun.com

Abstract

Recent research has produced a new and perhaps
dangerous technique for uniquely identifying blocks
that T will call compare-by-hash. Using this tech-
nique, we decide whether two blocks are identical
to each other by comparing their hash values, using
a collision-resistant hash such as SHA-1[5]. If the
hash values match, we assume the blocks are identi-
cal without further ado. Users of compare-by-hash
argue that this assumption is warranted because the
chance of a hash collision between any two randomly
generated blocks is estimated to be many orders of
magnitude smaller than the chance of many kinds
of hardware errors. Further analysis shows that this
approach is not as risk-free as it seems at first glance.

1 Introduction

Compare-by-hash is a technique that trades on the
insight that applications frequently read or write
data that is identical to already existing data.
Rather than read or write the data a second time
to the disk, network, or memory, we should use the
instance of the data that we already have. Using
a collision-resistant hash, we can quickly determine
with a high degree of accuracy whether two blocks
are identical by comparing only their hashes and not
their contents. After making a few assumptions, we
can estimate that the chance of a hash collision is
much lower than the chance of a hardware error, and
so many feel comfortable neglecting the possibility
of a hash collision.

Compare-by-hash is accepted by some computer sci-
entists and has been implemented in several different
projects: rsync[14], a utility for synchronizing files,
LBFS[4], a distributed file system, Stanford’s vir-
tual computer migration project[9], Venti[6], a block
archival system, Pastiche[3], an automated backup
system, and OpenCM][11], a configuration manage-
ment system. However, I believe some publications
overstate the acceptance of compare-by-hash, claim-
ing that it is “customary”[3] or a “widely-accepted
practice” [4] to assume hashes never collide in this

context. An informal survey of my colleagues re-
veals that many computer scientists are still either
unaware of compare-by-hash or disagree with the
technique strongly. Since adoption of compare-by-
hash has the potential to change the face of oper-
ating systems design and implementation, it should
be the subject of more criticism and peer review be-
fore being accepted as a general purpose computing
technique for critical applications.

In this position paper, I hope to begin an in-depth
discussion of compare-by-hash. Section 2 reviews
the traditional uses of hashing, followed by a more
detailed description of compare-by-hash in Section
3. Section 4 will raise some questions about the use
of compare-by-hash as a general-purpose technique.
Section 5 will propose some alternatives to compare-
by-hash, and Section 6 will summarize my findings
and make recommendations.

2 Traditional applications of hashing

The review in this section may seem tedious and
unnecessary, but I believe that a clear understanding
of how hashing has been used in the past is necessary
to understand how compare-by-hash differs.

A hash function maps a variable length input
string to fixed length output string — its hash
value, or hash for short. If the input is longer than
the output, then some inputs must map to the same
output — a hash collision. Comparing the hash
values for two inputs can give us one of two answers:
the inputs are definitely not the same, or there is a
possibility that they are the same. Hashing as we
know it is used for performance improvement, er-
ror checking, authentication, and encryption. One
example of a performance improvement is the com-
mon hash table, which uses a hash function to index
into the correct bucket in the hash table, followed
by comparing each element in the bucket to find a
match. In error checking, hashes (checksums, mes-
sage digests, etc.) are used to detect errors caused
by either hardware or software. Examples are TCP
checksums, ECC memory, and MD5 checksums on



downloaded files'. In this case, the hash provides
additional assurance that the data we received is cor-
rect. Finally, hashes are used to authenticate mes-
sages. In this case, we are trying to protect the orig-
inal input from tampering, and we select a hash that
is strong enough to make malicious attack infeasible
or unprofitable.

3 Compare-by-hash in detail

Compare-by-hash is a technique used when the pay-
off of discovering identical blocks is worth the com-
putational cost of computing the hash of a block. In
compare-by-hash, we assume hash collisions never
occur, so we can treat the hash of a block as a unique
id and compare only the hashes of blocks rather than
the contents of blocks. For example, we can use
compare-by-hash to reduce bandwidth usage. Be-
fore sending a block, the sender first transmits the
hash of the block to the receiver. The receiver checks
to see if it has a local block with the same hash value.
If it does, it assumes that it is the same block as the
sender’s, without actually comparing the two input
blocks. In the case of a 4096 byte block and a 160
bit hash value, this system can reduce network traf-
fic from 4096 bytes to 20 bytes, or about a 99.5%
savings in bandwidth.

This is an incredible savings! The cost, of course,
is the risk of a hash collision. We can reduce that
risk by choosing a collision-resistant hash. From
a cryptographic point of view, collision resistance
means that it is difficult to find two inputs that hash
to the same output. By implication, the range of
hash values must be large enough that a brute-force
attack to find collisions is “difficult.”? Cryptolo-
gists have given us several algorithms that appear to
have this property, although so far, only SHA-1 and
RIPEMD-160 have stood up to careful analysis[8].

With a few assumptions, we can arrive at an esti-
mate for the risk of a hash collision. We assume that
the inputs to the hash function are random and uni-
formly distributed, and the output of the hash func-
tion is also random and uniformly distributed. Let n
be the number of input blocks, and let b be the num-
ber of bits in the hash output. As a function of the
number of input blocks, n, the probability that we
will encounter one or more collisions is 1—(1—27%)".
This is a difficult number to calculate when b is 160,

IMD5 checksums are designed to detect intentional tam-
pering as well.

2A cryptographically secure hash is defined as a hash
with no known method better than brute force for finding
collisions.

but we can use the “birthday paradox”? to calculate
how many inputs will give us a 50% chance of find-
ing a collision. For a 160-bit output, we will need
about 2160/2 or 280 inputs to have a 50% chance of
a collision. Put another way, we expect with about
48 nines (1 — 27160) of certainty that any two ran-
domly chosen inputs will not collide, whereas empir-
ical measurements tell us we only have perhaps 8 or
9 nines of certainty that we will not encounter an un-
detected TCP error when we transmit the block[13].
In the face of much larger sources of potential error,
the error added by compare-by-hash appears to be
negligible.

Now that we’ve described compare-by-hash in more
detail, it should be clear how compare-by-hash and
traditional hashing differ: No known previous uses
of hashing skip the step of directly comparing the
inputs for performance reasons. The only case in
which we do skip that step is authentication, because
we can’t compare the inputs directly due to the lack
of a secure channel. Compare-by-hash sets a new
precedent and so does not yet enjoy the acceptance
of established uses of hashing.

4 Questions about compare-by-hash

What appears to be a fall of manna from heaven
should be examined a little more closely before
compare-by-hash is accepted into the computer sci-
entist’s tricks of the trade. In the following section,
I will re-examine the assumptions we made earlier
when justifying the use of compare-by-hash.

4.1 Randomness of input

In Section 3, we calculated the probability of a hash
collision under the assumption that our inputs were
random and uniformly distributed. While this as-
sumption simplifies the math, it is also wrong.

Real data is not random, unless all applications pro-
duce random data. This may seem like a trivial
and facile statement, but it is actually the key in-
sight into the weakness of compare-by-hash. If real
data were actually random, each possible input block
would be equally likely to occur, whereas in real
data, input blocks that contain only ASCII charac-
ters or begin with an ELF header are more common
than in random data. Knowing that real data isn’t

3The “birthday paradox” is best illustrated by the ques-
tion, “How many people do you need in a room to have a 50%
or greater chance that two of them have the same birthday?”
The answer is 23 (assuming that birthdays are uniformly dis-
tributed and neglecting leap years). This is easier to under-
stand if you realize that there are 23 x (22/2) = 253 different
pairs of people in the room.



random, can we think of some cases where it is non-
random in an interesting way?

Consider an application, let’s call it SHA1@home,
that attempts to find a collision in the SHA-1 hash
function. SHA1@home is a distributed application,
so it runs many instances in parallel on many ma-
chines, using a distributed file system to share data
when necessary. When two inputs are found that
hash to the same value, one program reads and
compares both input blocks to find out if they dif-
fer. If the file system uses compare-by-hash with
SHA-1 and the same block size as the inputs for
SHA1@home, this application will be unable to de-
tect a collision, ever. For example, if SHA1@Qhome
used a 2KB block size, it would run incorrectly if it
used LBFS as the underlying file system?.

This is only one very crude, very simple example
of an entire class of applications that are very use-
ful, especially to cryptanalysts. In their 1998 pa-
per, Chabaud and Joux implemented several pro-
grams designed specifically to find collisions in var-
ious hashing algorithms, including SHA-0 and sev-
eral relatives. They end by hinting at avenues of
research for attacking SHA-1[2]. Somewhat ironi-
cally, this paper is referenced by one of the papers
using compare-by-hash[9].

4.2 Cryptographic hashes — one size
fits all?

Collision-resistant hashes were originally developed
for use in cryptosystems. Is a hash intended for cryp-
tography also good for use in systems with different
characteristics?

Cryptographic hashes are short-lived. Data is
forever, secrecy is not. The literature is rife with
examples of cryptosystems that turned out to not
be nearly as secure as we thought. Weakness are
frequently discovered within a few years of a crypto-
graphic hash’s introduction[2, 8, 10]. On the other
hand, lifetimes of operating systems, file systems,
and file transfer protocols are frequently measured
in decades. Solaris, FFS, and ftp come to mind im-
mediately. Cryptologists choose algorithms based on
how long they want to keep their data secure, while
computer scientists should choose their algorithms
based on how long they want to keep their data, pe-
riod. (Cryptologists may desire to keep data secure
for decades, but most would not expect their current
algorithms to actually accomplish this goal.)

4LBFS uses variable sized blocks, but has minimum block
size of 2KB to avoid pathologically small block sizes[4]

Obsolecence can occur overnight. A related
consideration is how quickly obsolescence occurs for
cryptosystems. In operating systems, we are used
to systems slowing and gracefully obsolescing over a
period of years. Cryptosystems can go from state-
of-the-art to completely useless overnight.

Obsolescence is inevitable. Large governments,
corporations, and scientists all have a huge incentive
to analyze and break cryptographic hashes. We have
no proof that any particular hash, much less SHA-1,
is “unbreakable.” At the same time, history tells
us that we should expect any popular cryptographic
hash to be broken within a few years of its introduc-
tion. If anyone had built a distributed file system
using compare-by-hash and MD4, it would already
be unusable today, due to known attacks that take
seconds to find a collision using a personal computer.
MD5 appears to be well on its way to unusability as
well[8].

Upgrade strategy required. Given that our hash
algorithms will be obsolete within a few years, sys-
tems using compare-by-hash need to have a concrete
upgrade plan for what happens when anyone with a
PC can generate a hash collision. Upgrade will be
more difficult if any hash collisions have occurred,
because part of your data will now be corrupted,
possibly a very important part of your data.

4.3 Silent, deterministic, hard-to-fix er-
rors

Ordinarily, anyone who discovered two inputs
that hash to the same SHA-1 output would be-
come world-famous overnight. On a system using
compare-by-hash, that person would instead just
silently read or overwrite the wrong data (which is
more than a bug, it’s a security hole). To understand
why silent errors are so bad, think about silent disk
corruption. Sometimes the corruption goes unde-
tected until long after the last backup with correct
data has been destroyed.

In addition, any two inputs that hash to the same
value will always be treated incorrectly, whereas
most hardware errors are transitory and data-
independent. Redundant disks or servers provide
no protection against data-dependent, deterministic
errors. To avoid this, we could add a random seed
every time we compute the hash, but we won’t save
anything except in the most extreme cases if we have
to recompute hashes on every candidate local block
every time we compare a block.

Once a hash collision has been found and a demon-
strably buggy test program created using the collid-



ing inputs, how will you fix the bug? Usually, the
response to a test program that demonstrates a bug
in the system is to fix the bug. In this case, the
underlying algorithm is the bug.

4.4 Comparing probabilities

One of the primary arguments for compare-by-hash
is a simple comparison of the probability of a hash
collision (very low) and the probability of some com-
mon hardware error (also low but much higher). To
show that we cannot directly compare the probabil-
ity of a deterministic, data-dependent error with the
probability of nondeterministic, data-independent
error, let’s construct a hash function that has the
same collision probability as SHA-1 but, when used
in compare-by-hash, will be a far more common
source of error than any normal hardware error.

Define VAL-1(x) as follows:

z>0
z=0

_ SHA-1(z)
VAL-1(z) = { SHA-1(1)
In other words, VAL-1 is SHA-1 except that the first
two inputs map to the same output. This function
has an almost identical probability of collision as
SHA-1, but it is completely unsuitable for use in
compare-by-hash. The point of this example is not
that bad hash functions will result in errors, but
that we can’t directly compare the probability of a
hash collision with the probability of a hardware er-
ror. If we could, VAL-1 and SHA-1 would be equally
good candidates for compare-by-hash. The relation-
ship between the probability of a hash collision and
the probability of a hardware error must be more
complicated than a straightforward comparison can
reveal.

4.5 Software and reliability

On a more philosophical note, should software im-
prove on hardware reliability or should programmers
accept hardware reliability as an upper bound on
total system reliability? What would we think of a
file system that had a race condition that was trig-
gered less often than disk I/O errors? What if it
lost files only slightly less often than users acciden-
tally deleted them? Once we start playing the game
of error relativity, where do we stop? Current soft-
ware practices suggest that most programmers be-
lieve software should improve reliability — hence we
have TCP checksums, asserts for impossible hard-
ware conditions, and handling of I/O errors. For ex-
ample, the empirically observed rate of undetected
errors in TCP packets is about 0.0000005%][13]. We
could dramatically improve that rate by sending

both the block and its SHA-1 hash, or we could
slightly worsen that rate by sending only the hash.

4.6 When is compare-by-hash appropri-
ate?

Taking all this into account, when is it reasonable
to use compare-by-hash? For one, users of soft-
ware should know when they are getting best effort
and when they are getting correctness. When using
rsync, the user knows that there is a tiny but real
possibility of an incorrect target file (in rsync’s case,
the user has only to read the man page). When us-
ing a file system, or incurring a page fault, users ex-
pect to get exactly the data they wrote, all the time.
Another consideration is whether other users share
the “address space” produced by compare-by-hash.
If only trusted users write data to the system, they
don’t have to worry about maliciously generated col-
lisions and can avoid known collisions. By these
standards, rsync is an appropriate use of compare-
by-hash, whereas LBFS, Venti, Pastiche, and Stan-
ford’s virtual machine migration are not.

5 Alternatives to compare-by-hash

The alternatives to compare-by-hash can be sum-
marized as “Keep some state!” Compare-by-hash
attempts to establish similarities between two un-
known sets of blocks. If we keep track of which
blocks we are sure are identical (because we directly
compared them), we don’t have to guess. Unfortu-
nately, keeping state is hard. Part of the popularity
of compare-by-hash is undoubtably due to its ease
of implementation compared to a stateful solution.
However, simplicity of implementation should not
come at the cost of correctness.

One of the applications of compare-by-hash is re-
ducing network bandwidth used by distributed file
systems. To accomplish nearly the same effect, we
can resolve to only send any particular block over
the link once, keeping sent and received data in a
cache in both sender and receiver. Before sending a
block, the sender checks to see if it has already sent
the block and if so, sends the block id rather than
the block itself. This idea is proposed by Spring and
Wetherall in [12]. We might also agree in advance
on certain universal block ids, for example, block id
0 is always the zero block of length 4096 bytes. The
initial start-up cost is higher, depending on the de-
gree of actually shared blocks between the two ma-
chines, but after cache warm-up, performance should
be quite similar to compare-by-hash.

In combination with an intelligent blocking tech-



nique, such as Rabin fingerprints[7], which divide
up blocks at “anchor” points (patterns in the in-
put) rather than at fixed intervals, we can exper-
iment with byte and block level differencing tech-
niques that require similar amounts of computation
time as computing cryptographic hashes. Using fin-
gerprints to determine block boundaries allows us
to more easily detect insertions and deletions within
blocks.

Compression may still have more mileage left in it,
since we are willing to trade off large amounts of
computation for reduced bandwidth. We might try
compressing with several different algorithms opti-
mized for different inputs.
5.1 Existence proof: Bit-
Keeper

Rsync vs.

As an example of a system that improves on
compare-by-hash while retaining correctness, com-
pare rsync and BitKeeper[l], a commercial source
configuration management tool. They both solve
the problem of keeping several source code trees
in sync. (We will ignore the unrelated features
of BitKeeper, such as versioning, in this compari-
son.) Rsync is stateless; it has no a priori knowledge
of the relationship between two source code trees.
It uses compare-by-hash to determine which blocks
are different between the two trees and sends only
the blocks with different hashes. BitKeeper keeps
state about each file under source control and knows
what changes have been made since the last time
each tree was synchronized. When synchronizing, it
sends only the differences since the last synchroniza-
tion occurred, in compressed form. In comparison
to rsync, BitKeeper provides similar and sometimes
better bandwidth usage when simply synchronizing
two trees without resorting to compare-by-hash. Im-
provements BitKeeper provides over rsync include
elimination of reverse updates (synchronizing in the
wrong direction and losing your changes), automerg-
ing algorithms optimized for source code (so trees
can be updated in parallel and then synchronized),
and intelligent handling of metadata operations such
as renaming of files (which rsync sees as deletion and
creation of files).

With a little more programming effort, we can get
the bandwidth reduction promised by compare-by-
hash without sacrificing correctness and at the same
time adding functionality. Compare-by-hash still
has applications in areas where statelessness and low
bandwidth are more important than correctness of
data referenced, and users are aware of the risk they
are taking, as in rsync.

6 Conclusion

Use of compare-by-hash is justified by mathematical
calculations based on assumptions that range from
unproven to demonstrably wrong. The short life-
time and fast transition into obsolescence of cryp-
tographic hashes makes them unsuitable for use in
long-lived systems. When hash collisions do occur,
they cause silent errors and bugs that are difficult
to repair. What should worry computer scientists
the most about compare-by-hash is that real people
are running real workloads that will execute incor-
rectly on systems using compare-by-hash. Perhaps
research would be better directed towards alterna-
tives to or improvements on compare-by-hash that
avoid the problems described. At the very least, fu-
ture research using compare-by-hash should include
a more careful analysis of the risk of hash collisions.

7 Acknowledgments

Many people joined in on (both sides of) the dis-
cussion that led to this paper and provided help-
ful comments on drafts, including Jonathan Adams,
Matt Ahrens, Jeff Bonwick, Bryan Cantrill, Miguel
Castro, Whit Diffie, Marius Eriksen, Barry Hayes,
Richard Henderson, Larry McVoy, Dave Powell,
Bart Smaalders, Niraj Tolia, Vernor Vinge, and
Cynthia Wong,.

References

[1] Bitmover, Inc. Bitkeeper - the scalable dis-
tributed software configuration management
system. http://www.bitkeeper.com.

[2] Florent Chabuad and Antoine Joux. Differ-
ential collisions in SHA-0. In Proceedings of
CRYPTO 98, 18th Annual International Cryp-
tology Conference, pages 56-71, 1998.

[3] Landon P. Cox, Christoper D. Murray, and
Brian D. Noble. Pastiche: Making backup
cheap and easy. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Im-
plementation, 2002.

[4] Athicha Muthitacharoen, Benjie Chen, and
David Maziéres. A low-bandwidth network file
system. In Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles, 2001.

[6] National Institute of Standards and Technol-
ogy. FIPS Publication 180-1: Secure Hash
Standard, 1995.



(6]

[12]

[14]

Sean Quinlan and Sean Dorward. Venti: a new
approach to archival storage. In Proceedings of
the FAST 2002 Conference on File and Storage
Technologies, 2002.

M. O. Rabin. Fingerprinting by random poly-
nomials. Technical Report TR-15-81, Center
for Research in Computer Technology, Harvard
University, 1981.

B. Van Rompay, B. Preneel, and J. Vandewalle.
On the security of dedicated hash functions. In
19th Symposium on Information Theory in the
Benelux, 1998.

Constantine P. Sapuntzakis, Ramesh Chandra,
Ben Pfaff, Jim Chow, Monica S. Lam, and
Mendel Rosenblum. Optimizing the migration
of virtual computers. In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation, 2002.

Bruce Schneier. Applied Cryptography. John
Wiley & Sons, Inc., second edition, 1996.

Jonathan S. Shapiro and John Vanderburgh.
CPCMS: A configuration management system
based on cryptographic names. In Proceed-
ings of the 2002 USENIX Technical Conference,
FREENIX Track, 2002.

Neil T. Spring and David Wetherall. A pro-
tocol independent technique for eliminating re-
dundant network traffic. In Proceedings of the
2000 ACM SIGCOMM Conference, 2000.

Jonathan Stone and Craig Partridge. When the
CRC and TCP checksum disagree. In Proceed-
ings of the 2000 ACM SIGCOMM Conference,
2000.

Andrew Tridgell. Efficient Algorithms for Sort-
ing and Synchronization. PhD thesis, The Aus-
tralian National University, 1999.



