
Agile Application-Aware Adaptation for Mobility

Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn, Kevin R. Walker
. School of Computer Science

Carnegie Mellon University

Abstract

In this paper we show that application-aware adaptation, a
collaborative partnership between the operating system and
applications, offers the most general and effective approach
to mobile information access. We describe the design of
Odyssey, a prototype implementing this approach, and show
how it supports concurrent execution of diverse mobile ap-
plications. We identify agility as a key attribute of adap-
tive systems, and describe how to quantify and measure it.
We present the results of our evaluation of Odyssey, indi-
cating performance improvements up to a factor of 5 on a
benchmark of three applications concurrently using remote
services over a network with highly variable bandwidth.

1 Introduction

Adaptation is the key to mobility. Only through alertness and
prompt reactions can a mobile client offer acceptable service in
spite of the many problems that plague its existence. These in-
clude unpredictable variation in network quality, wide disparity in
the availability of remote services, limitations on local resources
imposed by weight and size constraints, concern for battery power
consumption, and lowered trust and robustness resulting from ex-
posure and motion [S, 15,311.

Once the need for adaptation is recognized, many questions fol-
low. What form should such adaptation take? Which system com-
ponents should bear responsibility for adaptation? How does one
characterize the adaptive capability of a mobile client? How does
one compare alternative designs from the perspective of adaptation?

We present our answers to these and related questions in this pa-
per. We describe the design and implementation of a software plat-
form called Odyssey, and show how it provides effective support
for concurrent execution of diverse mobile applications. We iden-
tify agility as a key attribute of adaptive systems, and describe how
to quantify and measure it. Finally, we present the results of our
evaluation of the Odyssey prototype to confirm the benefits of our
approach. These results indicate performance improvementsup to a
factor of 5 on a benchmark of three applications concurrently using
remote services over a network with highly variable bandwidth.

This research was supported by the Air Force Materiel Command (AFMC) under
DARPA contract numbers F19628-93-GO193 and F19628-96GOO61. Additional
support was providedby AT&T, Hughes, IBM, and Intel. The views and conclusions
contained here are those of the authors and should not be interpreted as necessarily
representingthe official policies or endorsements,either express or implied. of AFMC,
DARPA, AT&T, Hughes, IBM, Intel. Carnegie Mellon University, or theU.S. Govem-
ment.

Permission to make digital/hard copy of part or all rhis work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-I 6 1 O/97 Saint-Malo, France
Q 1997 ACM 0-69791~916~5/97/0010...$3.50

2 Design Rationale
Odyssey is a set of extensions to the NetBSD operating system to
support adaptation for a broad range of mobile informnation access
applications. These applications execute on mobile clients but read
or update remote data on servers. Our goal in building Odyssey is
to enable mobile scenarios such as the following one.

2.1 Motivation
Consider a hypothetical scenario in which a tourist with a weamblc
computer running Odyssey is walking in an urban setting* A wlrc-
less overlay network [16] provides the computer with a variety of
connection alternatives, which differ in bandwidth, coverage, cosf,
and reliability. The higher-bandwidth alternatives are more sensi-
tive to fading and signal loss as the user moves in and out of the
radio shadows of buildings.

As he walks, the user interacts with his computer through spoken
commands; he receives output through a head-mounted displny or
synthesized speech. The speech software exploits remote compute
servers when connected, but is capable of degraded interactions us-
ing a tiny vocabulary when disconnected. One application provides
a video narration of local history, with content delivered from a re-
mote server. Another application is a Web browser that can respond
to queries about the local environment.

Odyssey monitors resources such as bandwidth, CPU cycles, and
battery power, and interacts with each application to best exploit
them. For example, when high-bandwidth connectivity is lost due
to a radio shadow, Odyssey detects the change and notifies inter-
ested applications. The video application responds by skipping
frames, thus displaying fewer frames per minute, while the Web ap
plication responds by displaying degmded versions of large images,
When the user emerges from the radio shadow, Odyssey dctccts
a substantial improvement in bandwidth and notifies applications,
They then revert to their original behaviors.

Although the user is aware of changing application behavior dur-
ing his walk, he does not have to initiate adaptation or be involved
in its details. Rather, he can delegate these decisions to Odyssey,
confident that reasonable tradeoffs will be made.

While mobile scenarios such as this motivated the design of
Odyssey, its benefits may be valuable in a broader context. For ex-
ample, large bandwidth variations can arise in wide-area networks
with fluctuating loads. The adaptation supported by Odyssey can
be valuable in coping with such variation.

2.2 Fidelity
As the example in the previous section illustrates, the data accessed
by an Odyssey application may be stored in one or more gcncral-
purpose repositories such as file servers, SQL servers, or Web
servers. Alternatively, it may be stored in more specialized rcposl-
tories such as video libraries, query-by-image-content databases, or
back ends of geographical information systems.

The constraints of mobility complicate data access from such
servers. Ideally, a data item available on a mobile client should be
indistinguishable from that available to the accessing application if
it were to be executed on the server storing that item. But this corrc-
spondencemay be difficult to preserve as resources become scarce;

276

Tracy Farbacher
Noble97

some form of degradation may be inevitable. We define-fidelity as
the degree to which dam presented at a client matches the reference
copy at the server.

Fidelity has many dimensions. One well-known, universal di-
mension is consisfency. Systems such as Coda [l&32], Ficus [28]
and Bayou [38] expose potentially stale data to applications when
network connectivity is poor or nonexistent. Other dimensions of
fidelity depend on the type of data in question. For example, video
data has at least two additional dimensions: frame rate and image
quality of individual frames. Spatial data, such as topographical
maps, has dimensions of minimum feature size or resolution. For
telemetry data, appropriate dimensions include sampling rate and
timeliness. The dimensions of fidelity are natural axes of adaptation
for mobility, However, the adaptation cannot be solely determined
by the type of data; it also depends on the application. Different ap-
plications using the same data may make different tradeoffs among
dimensions of fidelity.

A key goal of Odyssey is to provide a framework within which
diverse notions of fidelity can easily be incorporated. Our focus
on mobile information access allows us to bound this diversity to
manageable proportions. Specifically excluded from our purview
are applications that involve stringent real-time constraints, such as
video conferencing and multi-client interactive games.

Supporting multiple levels of fidelity complicates the task of
evaluation. Since adaptive applications trade fidelity of data for
performance, focusing solely on the latter can result in a mislead-
ing evaluation. For example, by forcing applications to operate at
their lowest fidelity levels at all times, a system could ensure better
performance than a competing system that strives to support higher
fidelity levels when possible. Yet, this degenerate approach vio-
lates our intuitive notion of what constitutes a good system. Hence,
the evaluation of an adaptive system must take into account both
fidelity and performance.

2.3 Concurrency
The ability to execute multiple independent applications concur-
rently on a mobile client is vital. Although this ability is taken for
granted on desktop operating systems, there continues to be skep-
ticism about its value in mobile clients. This skepticism is fueled
by the popularity of devices such as PDAs [I] and pocket organiz-
ers [39], which execute only one application at a time.

While such specialized mobile devices fill an important niche,
we are convinced that many mobile users will find it valuable to run
background applications in addition to the foreground application
that dominates their attention. For example, an information filter-
ing application may run in the background monitoring data such
as stock prices or enemy movements, and alert the user as appro-
priate, As another example, an application used in emergency re-
sponse situations may monitor physical location and motion, and
prefetch damage-assessment information for the areas to be tra-
versed shortly.

To effectively support concurrent applications, one must control
their use of limited resources. In other words, there needs to be
centralized monitoring and coordinated resource management on
a mobile client, Operating systems, which have historically per-
formed this role for CPU cycles and memory, must now manage a
broader range of resources such as network bandwidth, disk cache
space and battery power.

The need to coordinate resource management across applications
mutes the effectiveness of many current approaches to mobile com-
puting. For example, commercial applications such as Eudora [29]
provide vertically integrated support for mobility, where each appli-
cation assumes that it has full use of available network bandwidth.
Even a more sophisticated toolkit approach such as Rover [13] only
pays minimal attention to resource coordination.

2.4 Agility
Sound adaptation decisions require accurate and timely knowledge
of resource availability. Ideally, a mobile client should always have
perfect knowledge of current resource levels. In other words, there
should be no time lag between a change in resource availability
and its detection. Further, if this change is sufficient to warrant
modification of client behavior, that too should be accomplished
without delay.

Of course, no physical system can meet this ideal. The best we
can hope for is to build close approximations through good design
and engineering. Thus, a key property of an adaptive system is the
speed and accuracy with which it detects and responds to changes
in resource availability. We call this property the agil@ of the sys-
tem. When changes are large and erratic, only a highly agile system
can function effectively. In more stable environments, less agile
systems may suffice. Agility is thus the property of a mobile sys-
tem that determines the most turbulent environment in which it can
function acceptably.

Agility is a complex property with many components. One
source of complexity is differing sensitivity to different resources.
For example, a system may be much more sensitive to changes in
network bandwidth than to changes in battery power level. An-
other source of complexity is differing origins of changes in re-
source availability. The change may be caused by variation in the
supply of a resource due to mobility, or by changed demand for it
by concurrent applications. Since different mechanisms may be in-
volved in detecting these two different types of changes, it may be
necessary to distinguish these components of agility.

2.5 Minimalism
Rather than using a clean-sheet approach to designing Odyssey, we
decided to extend an existing system. We chose NetBSD, a vari-

ant of the 4.4 BSD Unix operating system [23], as the starting
point. NetBSD source code is publicly available withoutcencum-
brance, thus allowing free distribution of derivatives. The popular-
ity of NetBSD also offers the possibility of attracting a substantial
Odyssey user community.

We avoided changes to the NetBSD API and internal structure
unless essential, and made the few necessary changes consistent
with NetBSD idiom. Thus, Odyssey should be viewed as an ex-
ercise in minimalism: it represents the smallest set of interface and
code extensions we believe necessary for agile adaptation in mobile
environments.

3 Application-Aware Adaptation

3.1 Model of Adaptation
Odyssey’s approach to adaptation is best characterized as
application-aware adaptation. The essence of this model is a col-
laborative partnership between the system and individual applica-
tions. The system monitors resource levels, notifies applications of
relevant changes, and enforces resource allocation decisions. Each
application independently decides how best to adapt when notified.

This division of responsibility directly addresses the issues of ap-
plication diversity and concurrency. Diversity is accommodated by
allowing applications to determine the mapping of resource levels
to fidelity levels. Concurrency is supported by allowing the sys-
tem to retain control of resource monitoring and arbitration. The
challenge is to design a system that can support this separation of
concerns without compromising agility.

277

Application-aware

W=JY

t
Lahsez-fake

Eudora

Y

t
Application-transparent

Coda

Figure 1: Models of Adaptation

Figure 1 places application-aware adaptation in context, span-
ning the range between two extremes. At one extreme, adaptation
is entirely the of individual This laissez-

approach, used commercial software such as
dora, avoids need for support. But, discussed in
tion it fails to address the issue of application concurrency. At
the other extreme, upp[icufion-transparent udaprufion, the system
bears full responsibility for both adaptation and resource manage-
ment. This approach, exemplified by Coda, is especially attractive
for legacy applications because they can run unmodified. Applica-
tion concurrency is supported, but diversity is
since control fidelity is in the of the

3.2 Realizing Model
The approach to application-aware adapta-

would be directly reflect separation of in the
architecture. In an architecture, code would

data generically; applications would entirely re-
for differential handling of data types.

Unfortunately, the wide disparity in the physical and logical
properties of various data types requires that some form of type-
awareness be incorporated into the system for efficient resource us-
age. For example, the size distribution and consistency require-
ments of data from an server differ from those
relational database Image data be highly
using one but not Video data be efficiently

using a protocol that drops rather than retrans-
mits lost data; in contrast, only reliable transmissions are accept-
able for file or database updates. It is impossible to optimize for
such differences without some system-level knowledge of type.

These considerations lead to a more sophisticated architecture in
which Odyssey has two responsibilities. It must be of shared

to remote by concurrent so that can prop-
manage resources. the same it must type-specific

knowledge allow effective management actions.
knowledge is for example, estimate the costs
and of compressing cached item flushing it
refetching it

Odyssey incorporates via specialized com-
ponents wardens. A encapsulates the
support at client necessary effectively manage data type.
fully support new dam an appropriate has to writ-
ten incorporated Odyssey at each client. The wardens are
subordinate to a type-independent component called the viceroy,
which is responsible for centralized resource management.

The collabqrative relationship envisioned in application-aware
adaptation is thus realized in two parts. The first, between the
viceroy and its wardens, is data-centric: it defines lev-
els each data and factors into resource
The second, applications and is action-centric:

provides applications control over selection of
levels supported the wardens.

4 Design and
An implementation Odyssey must an application

l operate on Odyssey objects,
0 express resource expectations,
l be notified when expectations are no longer met, and
l respond by changing fidelity.

The Odyssey mechanisms supporting each of these requirements
are described in the following sections.

4.1 Operating on Odyssey Objects
Consistent with our goal of minimalism, we have built upon
NetBSD file system calls rather than defining a completely new in-
terface. Thus, Odyssey is integrated into NetBSD as a new VFS 810
system [19]. In addition, we have found it necessary to add a few
new system calls.

As shown in Figure 2, we have implemented the viceroy and war-
dens in user space rather than in the kernel. Operations on Odyssey
objects are redirected to the viceroy by a small in-kernel inrercepfor
module. All other system calls are handled directly by NetBSD.

Odyssey

Figure 2: Odyssey Client Architecture

Wardens are statically linked with the viceroy, and the ensemble
executes in a single address space with user-level threads. Com-
munication between the viceroy and wardens is through procedure
calls and shared data structures. The wardens are entirely respon-
sible for communicating with servers and caching data from them
when appropriate- applications never contact servers directly.

Our implementation of Odyssey outside the kernel is consistent
with the philosophy of modem operating system designs such as
Exokemel[6] and SPIN [3]. Since extensibility is the motivation
for such systems, their use in the context of Odyssey should result
in improved agility and easier installation of new wardens.

Integrating Odyssey with the file system yields several key ad-
vantages. It gives us a well-understood framework for integmtion
as well as useful infrastructure to simplify implementation. Since
file opemtions are performed on Odyssey objects by the appropriate
warden, their semantics can be customized to provide a modicum
of type-awareness without new system calls.

At the same time, our, approach imposes certain limitations,
Some data types do not naturally fit either the naming or access
methods provided by the file system. Further, there are no standard
file operations corresponding to fidelity changes. For naming, wo
incorpomteextensions similar in spirit to virW directories [9]. For
access methods and fidelity changes, we rely on a general-purpose
mechanism described in Section 4.4.

As Odyssey matures, we may discover that further improvc-
ments in functionality or agility are impossible unless we move the
viceroy and wardens into the kernel. Until there is compelling cvi-
dence of this, however, we plan to retain the current architecture.

278

request(in path, in resource-descriptor, out request-id)
cancel(in request-id)

(a) Resource Negotiation Operations

resource-id
lower bound
upper bound
name of uucall handler

(b) Resource Descriptor Fields

(c) Generic Resources in Odyssey

1 handler(in request-id, in resource-id, in resource-level) 1

(d) Upcall Handler

tsop(in path, in opcode, in insize, in inbuf,
inout outsize, out outbuf)

(e) Qpe-Specific Operations

This figure shows Odyssey’s extensions to the NetBSD prom-
ming interface. Note that the request and tsop calls have vari-
ants that identify Odyssey objects by file descriptors rather than
pathnames.

Figure 3: Odyssey API

4.2 Expressing Resource Expectations
Applications communicate resource expectations to Odyssey using
the request system call shown in Figure 3(a). The call takes a
resource descriptor identifying a resource and specifying a window
oftolerance on its availability. This call expresses the application’s
desire to be told if the availability of the resource strays outside the
window.

If, at the time of the request, the availability of the resource
is within the window of tolerance, the viceroy registers the request
and returns a unique identifier for it. This identifier can be used by
the viceroy in notifying the application that the resource has left the
requested bounds, or by the application in a future cancel system
call to discard the registered request.

If the resource is currently outside the bounds of the tolerance
window, an error code and the current available resource level are
returned. The application is then expected to try again, with a new
window of tolerance corresponding to a new fidelity level.

The fields of a resourcedescriptor are shown in Figure 3(b). Each
resource is named by a unique resource identifier. Figure 3(c) lists
the generic resources we plan to manage in Odyssey. At present the
prototype only manages the most critical resource in mobile com-
puting: network bandwidth. The window of tolerance is indicated
by lower and upper bounds. A resource descriptor also specifies the
name of a procedure that will be called to notify the application that
the resource has left the window.

4.3 Notifying Applications
When the viceroy discovers that the availability of a resource has
strayed outside a registered window of tolerance, it generates an
upcull to the corresponding application. The application adjusts
its fidelity according to its individual policy. It then issues another
request call to register a revised window of tolerance appropriate
to the new fidelity.

An upcall handler is invoked with three parameters, as shown in
Figure 3(d). The first parameter identifies the request operation
on whose behalf the upcall is being delivered. The second param-
eter identifies the resource whose availability has changed, and the
third parameter gives the new availability.

Upcalls closely resemble Unix signals, but offer improved func-
tionality. Like signals, upcalls can be sent to one or more processes,
can be blocked or ignored, and have similar inheritance semantics
on process fork. Unlike signals, upcalls offer exactly-once, in-order
semantics for each receiver of a particular upcall. Further, upcalls
allow parameters to be passed to target processes and results to be
returned.

4.4 Changing Fidelity
Requests for fidelity changes do not map well to the NetBSD file
system interface. Further, many data types have natural access
methods that are not well supported by the untyped byte stream
model. To address these shortcomings, we have included a general-
purposeescapemechanismcalled tsop, ortype-specificoperation,
shown in Figure 3(e). The arguments to tsop specify an Odyssey
object and the opcode of a type-specific operation to be performed
on it. Input and output parameters are specified as unstructured
memory buffers, in the spirit of the ioctl system call.

5 Example Applications

To explore Odyssey’s ability to support application diversity, we
modified three very different applications to run on it. The first
two applications are drawn from the domain of mobile information
access: a video player whose source code we have access to, and
a Web browser whose source code is not publicly available. The
third application, a speech recognizer, was chosen to explore the
effectiveness of Odyssey outside its original target domain.

Each application requires a different strategy for integration into
Odyssey, and each has distinct notions of fidelity. Collectively,
these applications serve as a vehicle to explore the generality and
performance characteristics of Odyssey.

5.1 Video Player
Our support for video is based on xanim, a public-domain software
package that can generate video animation from data stored in vari-
ous formats in a local file. As shown in Figure 4, we split its mono-
lithic implementation into a client and server, and wrote a warden
to satisfy client requests and fetch data from the server.

.“....“....................*
Client

.

/ -3
:

.

Figure 4: Video Player in Odyssey

279

Each movie is stored in multiple tracks at the server, one track
per fidelity level. We have incorporated three levels of fidelity for
Quicktime 1111 video data: JPEG-compressed 1421 color frames at
qualities 99 and 50, and black-and-white frames. Storing all three
tracks incurs only modest overhead, typically about 60% more than
storing just the highest fidelity track.

The warden supports two tsops: to read a movie’s me&data,
and to get a particular frame from a specified track. The warden
performs read-ahead of frames to lower latency.

When the player opens a movie, it calculates the bandwidth re-
quirements of each track from the movie me&data. The player
begins the movie at highest possible quality, and registers the cor-
responding window of tolerance with Odyssey. When it is notified
of a significant change in bandwidth, the player determines a new
fidelity level and switches to the corresponding track. If the player
switches from a low fidelity track to a higher one, the warden dis-
cards the prefetched low-quality frames.

5.2 Web Browser
Netscape Navigator, or simply Netscape, is a widely-used tool for
accessing the World-Wide Web. It is an especially interesting ap-.
plication for Odyssey because we do not have access to its source
code. Since we cannot directly modify Netscape to take advantage
of Odyssey, we exploit its proxy facility as shown in Figure 5.

,...................................*
Client .

:

Figure 5: Extending Netscape for Odyssey

All of Netscape’s requests are redirected to a client module called
the cellophane. Together, Netscape and the cellophane constitute a
single application from the viewpoint of Odyssey. The cellophane
makes use of the Odyssey API and selects fidelity levels. Netscape
passively benefits from the adaptation initiated by the cellophane.

The cellophane transforms HTTP requests from Netscape into
file operations on Odyssey Web objects. The Web warden forwards
these requests via the client’s mobile network connection to a dis-
Mation server. The latter provides multiple levels of fidelity for
images along the lines suggested by Fox et al [7]. Since images
tend to be large and constitute a substantial fraction of HTTP traftic,
focusing on them has a high payoff. At the highest fidelity, images
are uncompressed. Progressively lower levels correspond to JPEG-
compressed images of decreasing quality. The warden provides a
tsop to set the fidelity level.

The distillation server fetches requested objects from the appro-
priate Web server, distills them to the requested fidelity level, and
sends the results to the warden. The data is then passed to Netscape
via the cellophane. These steps are completely transparent to both
Netscape and the Web server; each perceives normal Web access.

Netscape exemplifies the unfortunate reality that source code is
not publicly available for a growing number of important applica-
tions. Code interpositioning. the approach described above, repre-
sents only one way for such shrink-wrapped applications to benefit
from Odyssey. Other possibilities include static binary rewriting of
executables and dynamic modification of system calls.

5.3 Speech Recognizer ! 1

Speech recognition offers considerable’p’otential as well as chal-
lenge for mobile computing. It is especially useful when mobilo
because it leaves the user’s hands and eyes free for other actlvb
ties such as driving [34]. However, the resource requirements for
high-accuracy speech recognition are substantial, especially when
mobile, since background noise is often high. Adding higher-level
semantic processing, such as language translation, leads to even
greater demands on computing resources. This combination of op
porhmity and challenge led us to implement speech recognition as
an Odyssey application, even though it falls outside our primary
domain of mobile information access.

.
: Client

Figure 6: Speech Recognition in Odyssey

Figure 6 illustrates our support for speech recognition in
Odyssey. The starting point for this implementation is a speech
recognition system called Janus [41], whose source code is avall-
able to us. We have split this system into a client and server, and
constructed a speech warden. The server accepts two forms of lnd
put: a raw utterance, or an utterance that has already been processed
by the first of several phases of Janus. This pre-processing ylclds a
compression ratio of approximately 5:l at modest CPU cost.

The speech front-end captures a raw speech utterance and then
writes it to an object in the Odyssey namespace. The warden, using
the current bandwidth estimate, decides whether it is faster to per-
form the first pass of the recognition on the local, slower CPU, or
to ship the larger, raw utterance to the server. In the extreme case
of disconnection, the local Janus is capable of recognizing the ut-
terance, but at a severe CPU and memory cost, When the uttemncc
is recognized, the resulting text is made available to the front-end
through a read operation. We are currently refining our imple-
mentation to support multiple levels of recognition fidelity.

6 Evaluation

Three central questions drove our evaluation of Odyssey:

l How agile is Odyssey in the face of changing network bnnd-
width?

l How beneficial is it for applications to exploit the dynamic
adaptation made possible by Odyssey?

l How important is centralized resource management for con-
current applications?

In posing these questions, two secondary questions come to light,
First, how should the concept of agility be quantified? Second,
what experimental methodology should we use to obtain agility
metrics? We address these secondary questions first, in Section 6,1,
and present our answers to the primary questions in Section 6.2.

280

6.1 Evaluation Strategy
6.1.1 Agility Metrics
Our approach to quantifying agility draws upon well-established
principles for measuring dynamic response from the field of control
sys&ns [4,30]. The accepted practice in that field is to characterize
the adaptive ability of a system with respect to a particular output in
terms of its responses to a set of input reference wavefomts. Each
reference waveform is conceptually simple, yet greatly stresses the
adaptive ability of the system by varying the input in some sharp
and substantial manner.

i-l
1

(a) Step-Up
I

(b) Step-Down

nll-
(c) Impulse-Up (d) ImpuIse-Down

The Step-Up and Step-Down waveforms are each 60 seconds long,
with a single, abrupt transition at the midpoint. The Impulse-Up and
Impulse-Down waveforms are approximations to the ideal impulse,
which is a spike of infinitesimal width and infinite height. We ap-
proximate the ideal with two-second wide excursions in the middle
of a 60.second period. Our choice of parameters for these wave-
forms is based on ourestimateof the basic network time constants of
tvoicaldistributed svstems todav: 30 secondsshoutd be long enough
f;j a system to reaih steady s&e after a bandwidth pertu&ation~a
2 second perturbation is large enough to be detectable by a sensitive
system, yet small enough to be missed by an insensitive one.

Figure 7: Reference Waveforms for Agility Experiments

Figure 7 illustrates the reference waveforms used in our evaht-
ation. Although these waveforms are idealized, approximations to
them can occur in practice. The step waveforms can arise in over-
lay networks, where a mobile client may seamlesslyswitch between
different network interfaces. Further, virtual radios such as Spec-
bumware [37] may allow sharp bandwidth degradation. Impulse
waveforms can arise as a result of frequent transitions in either of
these situations, or in the presence of bursty background traffic.

6.1.2 Experimental Methodology
Generating Discontinuous Waveforms To subject Odyssey and
its applications to these reference waveforms, we need to generate
sharp discontinuities in network bandwidth. Accomplishing this
in a repeatable and reliable manner is extremely difficult on any
real network or combination of networks. We solve this problem
through a technique called truce modulation [26,33].

Trace modulation performs application-transparent emulation of
a slower target network over a faster, wired LAN. It is implemented
in two parts: a layer inserted in the protocol stack betweenthe trans-
port and network layers, and a user-level daemon. The added layer
delays all traffic into and out of the modified host according to a
simple linear model combining latency and bandwidth-induced de-
lays, The daemon reads a list of model parameters, called a re-
play trace, from a file and feeds it to the delay layer. We have
created synthetic replay traces to obtain the bandwidth variations
corresponding to the reference waveforms.

Interpreting Results Since Odyssey applications trade fidelity
for performance, interpreting the results of experiments requires
some care. In comparing two strategies, one is strictly better than
the other if it provides better fidelity with comparable performance,
or better performance with comparabIe fidelity. In other cases, the
comparison must take into account the application’s goals.

These comparisons are clearly dependent on the choice of fidelity
metrics. However, since only relative comparisons are made within
a single application, the only requirement on fidelity is that it be
strictly increasing as the quality of presented data increases.

6.13 Experimental Conditions

AII of our experiments used identical hardware and software con-
figurations: a single 90 MHz Pentium client with 32 MB of mem-
ory, and a collection of 200 MHz Pentium Pro servers with 64 MB
of memory. These machines were running a NetBSD 1.2 kernel
customized to include Odyssey and trace modulation extensions;
modulation was performed at the client.

The bandwidth levels encoded in our modulation traces were
chosen with two constraints in mind. First, they must be reasonably
achieved on current wireIess hardware. Second, they must provide
for interesting tradeoffs when running our sample applications. We
chose 120 KBls (kilobytes per second) and 40 KBls for the high
and low bandwidth levels. The protocol round trip time measured
on our setup was 21 ms for both bandwidths.

6.2 Experimental Results
6.2.1 How Agile is Odyssey?

In order to allow applications to makeintelligent trade-offs between
performance and quality, Odyssey must track changes in both the
supply of and demand for network bandwidth. Because Odyssey
may often be used in weakly-connected environments, we rely on
purely passive observations rather than an active approach such as
that suggested by Keshav [17]. These observations are logged by
our user-level RPC mechanism [25] which is impkmented on UDP.
This mechanism combines a conventional RPC protocol for small
exchanges with a sliding-window, selective-acknowledgement pro-
tocol for bulk data transfer. Each distinct endpoint has its own
log, and observations for different endpoints are recorded indepen-
dently.

Log entries are of two kinds: roundtrip entries that are recorded
for smal! exchanges, and throughput entries that arise from bulk
transfers. Each round trip entry records the time, Trtt, to send a
request to a server and receive a response, less server computation
time. Each throughput entry records Twin, which is either the time
for a receiver to request and receive a window’s worth, D. of data,
or for a sender to transmit that data and receive an acknowledge-
ment. Round trip and throughput estimates are both smoothed by
the viceroy using the following equation:

new = cu(measured) + (1 - cu)(oId) (1)

Our implementation uses an CY of 0.75 for round trip time, and 0.875
for throughput.

To obtain a bandwidth estimate, we observe that the transmis-
sion time for D bytes is T& minus the time for transmitting the
acknowledgement or the time to transmit the request. Assuming
symmetrical data rates, both of these are Trtt/2. This yields the
following expression for bandwidth:

’ = T,;, -)T,&)
(2)

Noise in round trip estimates can severely impact bandwidth es-
timates; to discount anomalous increases in round trip time, we cap
the percentage rise possible at each estimate. This has the effect
of erring on the side of caution and underestimating bandwidth in
certain situations, but eliminates anomalies introduced by our user-
level implementation.

The viceroy collects information from ail logs to estimate the to-
tal bandwidth available to the client. It then estimates the fraction

281

of this bandwidth likely to be available to each connection. A con-
nection estimate is composed of hvo parts: a competed-forpart pro-
portional to recent use, and a fair-share part reflecting an expected
lower bound.

Varying Supply To measure agility with respect to bandwidth
supply, we ran a synthetic Odyssey application, bitstream, that con-
sumed data as fast as possible through a streaming warden over a
single connection from a server. During data transfer, we varied
network bandwidth in accordancewith the reference waveforms of
Figure 7. To ensure that the system was in steady state, we primed
it for thirty seconds prior to observation. The bandwidth estimated
by Odyssey for each waveform is shown in Figure 8.

Figure 8(a) shows that Odyssey demonstrates excellent agility
on the Step-Up waveform by detecting its bandwidth increase al-
most instantaneously. The second graph, Figure 8(b), shows that
agility on the Step-Down waveform is not quite as good as on Step-
Up. The settling time for this waveform - the time required to
reach and stay within the nominal bandwidth range - is 2.0 sec-
onds. The slower downward transition is caused by the fact that
we generate a throughput estimate only at the end of a window of
data. If bandwidth falls abruptly while a large window of data is
being transmitted, the drop is not recorded until the last packet of
the window arrives.

Figures 8(c) and 8(d) show agility for the Impulse-Up and
Impulse-Down waveforms. The leading edge of the upward im-
pulse is accurately traced, but the trailing edge has a noticeable set-
tling time. The downward impulse is too short for estimation to
settle accurately, and there is again a noticeable settling time on the
trailing edge of the impulse.

Varying Demand We next examine agility with respect to band-
width demand. We began these experiments with a single bitstream
application running on a client. As before, we primed the system for
thirty seconds to ensure that it was in steady state before beginning
observation. After thirty seconds of observation, we introduced a
second, identical bitstream client. To study sensitivity of the re-
sults to offered load, we repeated the experiments with each appli-
cation attempting to consume IO%, 45%, and 100% of the nominal
throughput. All experiments were conducted at the higher of our
two modulated bandwidths.

Figures 9(a)-9(c) show the viceroy’s estimation of the bandwidth
available to the two competing streams, In all experiments, the sec-
ond stream causes some transient effects when it is started. This
transient is much more pronounced in the two higher-load experi-
ments; in the full-utilization case it takes almost 5 seconds to settle
back to the nominal value.

At low utilization, the second stream reaches its nominal value
almost immediately; in the other two cases, this takes longer.
Higher rates of consumption by the first stream give it more weight
compared to the startup of the second stream. Hence; the first
stream is given more of the competed-for bandwidth until the sec-
ond stream has established itself.

6.2.2 How Beneficial is Adaptation?

We next compare the performance and fidelity of adaptive applica-
tions using Odyssey with versions of these applications using static
policies, In this comparison, we represent fidelity as a number be-
tween zero and one that indicates, in an application-specific man-
ner, the quality of data delivered.

In our experiments, each application executed the same workload
using an adaptive strategy as well as one fixed strategy per fidelity
level. Each execution was repeated for all the reference waveforms.
As before, we primed the experiment with a thirty second period of
constant bandwidth to eliminate startup transients.

o!
0 20 40

1

EIaprad thllo (*","

PO.
(a) Step-Up Waveform

-I

g ..-----------‘--“-----i
S
= ,~-~---s---“.--7-~
1
5 m
P

w-
B so-
E
f

sIy----.---.---.---.--
-

w
t
I

20
I

0 40
ElaDscd thlle t.!

(b) Step-Down Waveform . .
$.$lSO-

a :
z.
r

~loo-

i-;

2
$4
J

s
m

2
f so- *

..-_--___-_--__-_------ .--__----___--._______
=,
w

P0
(c) Impulse-Up Waveform

B - ---------------------, ;----‘---“‘----““--
5

i

’ I
‘0100 - 1. -.- -I-.4- T - ;*~-P--,v-- t- +
2 -

I
0 20 40

f

Elapsed thlls (*y

(d) Impulse-Down Waveform

This figure shows the agility of bandwidth estimation in the face of
varying supply. Each graph merges the results from five trials, and
each bandwidth observation is represented by a single dot on tho
graph. The dashed lines represent the theoretical bandwidth of the
emulated network, as specified by the synthetic traces used for cmu-
lation. The dotted lines are the measured,instantaneous throughputs
obtained using a large bulk transfer between client and server. Idc-
ally, all samples would lie between the dashed and dotted lines.

Figure 8: Supply Estimation Agility

282

p’“: .“““_“““““““““““““““““““““““““““”””””””””””””

ho. ‘ 1. S.A.

E :
m
; ..““““““““““““““““““““““““““““““””””””-””-----
8 50..FS- -

f :

$0 40
Elapsed time (sy

(a) 10% utilization/stream

“,-

0 i0 LO
Elapsed Ume (s.

(b) 45% u tiliza tionlstream

i!150 ““_““““_““““““““““““““““““““““““””””””””””””

fwo

D m
x
z50

0 ,
20 40

Elapsed time (sy

(c) 100% (attempted) utilization/stream

This figure shows the agility of bandwidth estimation; note that we
measure avaihrbility, not consumption. The upper curve is the total
estimated bandwidth; the lower is the bandwidth available to the see-
ond stream, which starts after 30 seconds. The pairs of straight lines
show the nominal ranges for each curve; a perfectly agile system
would always show the upper and lower curves within their respec-
tive pairs. Each graph depicts the results of five trials. The solid lines
show averages, and gray regions show the spread between observed
maximum and minimum values.

Figure 9: Demand Estimation Agility

Video Player We compare the adaptive behavior of the Odyssey
video player to three fixed policies: always JPEG(99), always
JPEG(SO), and always black-and-white. The higher bandwidth
is sufficient to fetch JPEG(99) frames. At the low bandwidth,
JPEG(50) frames can be fetched without loss. All movie tracks
are encoded at ten frames per second, with 600 frames to display
during each trial.

JPEG(99) frames are assigneda fidelity of 1.0, JPEG(50) frames
have a fidelity of 0.5, and bIack-and-white frames a fidelity of 0.01.
The fidelity for a single execution of xanim is the average fidelity
of frames displayed. Thus a movie with half of its frames displayed
from each of the two best tracks would have a fidelity of 0.75. The
performance metric is frames dropped. Xanim’s adaptation goal is
to play the highest quality possible without dropping frames. Other
applications might choose, instead, to preserve frame quality but
reduce the frame rate.

Figure 10 summarizes the results of the xanim benchmark.
In both Step waveforms, roughly half the frames displayed by
Odyssey are JPEG(50) frames, and the other half JPEG(99) frames.
For Impulse-Up, Odyssey shows only JPEG(50) frames, and for
Impulse-Down almost all JPEG(99) frames. Thus, the adaptive
xanim nearly always displays the optimal quality frame.

For all waveforms other than Impulse-Up, Odyssey achieves a
much better fidelity than JPEG(50). with only a modest increase
in dropped frames. For all waveforms other than Impulse-Down,
Odyssey drops many fewer frames than the JPEG(99) strategy by
reverting to JPEG(50) frames at low bandwidth. For Impulse-
Down, Odyssey is indistinguishable from the JPEG(99) strategy.

In the adaptive strategy, dropped frames occur primarily during
the downward bandwidth transitions. It takes at least one data trans-
fer for Odyssey to notice the drop in bandwidth, and that transfer is
fetching high-quality frames, which are destined to be late.

Web Browser For the Web browser experiments, we repeatedly
fetched a 22KB image as fast as possible. To preserve experimental
control, the image was stored on a Web server on the test network,
with a distillation server interposed between the client and the Web
server. The cellophane could choose one of four levels of fidelity:
original quality or JPEG compression at quality levels 50, 25, or
5. The fidelity of each of these levels is 1.0, 0.5, 0.25, and 0.05
respectively. The fidelity for an experiment is the average fidelity
of all images fetched in that experiment.

The performance metric is the average time to fetch and display
an image during an execution. For the baseline against which to
compare, we executed the trace on an unmodified, private Ethernet.
Our Web client’s adaptation goal is to display the best quality image
that can be fetched within twice the Ethernet time, in this case 0.4
seconds. With this goal, fullquality images can be fetched at the
high bandwidth. At low bandwidth JPEG(S0) is the best possible.

Figure 11 summarizes the results of the Web benchmark. The
static strategy of fetching full-quality images only meets our per-
formance goals in the Impulse-Down case. This is not surprising,
as most of that trace provides sufficient bandwidth for full-quality
images. In contrast, Odyssey meets our performance goal in all
cases, and does so at better quality than any of the sufficiently fast
static strategies. In the Impulse-Up case, Odyssey is fooled into
fetching better quality images for a brief period by the impulse’s
transient increase in bandwidth.

Speech Recognizer For the speech experiments, we recognized a
single, short phrase, repeating the recognition as quickly as possi-
ble. Since the quality of recognition does not vary, the only inter-
esting metric is the speed with which recognitions take place. Fig-
ure 12 gives the recognition times for the three possible strategies:
always hybrid, always remote, and adaptive.

At the bandwidths in our reference traces, hybrid translation is
always the correct strategy when speech is the sole application. As
Figure 12 shows, Odyssey duplicates the always-hybrid strategy.
We have confirmed, through experiments not reported here, that at
higher bandwidths an adaptive strategy has benefits.

6.23 How Important is Centralized Resource Management?

Finally we examine the usefulness of Odyssey’s centralized re-
source management. We do this by comparing Odyssey with two
forms of uncoordinated resource management, with all three appli-
cations concurrently running on the much longer synthetic wave-
form shown in Figure 13.

As a basis of comparison we modified the viceroy to support
Zaissez-faire resource management; rather than combining infor-
mation from all logs as in Section 6.2.1, each log is examined in
isolation. This reflects what applications would discover on their
own: information is less accurate than that globally obtained but
with similar delays in discovery.

283

I Waveform
I B/W JPEG(S0) JPEG(99) Odyssey

Fidelity = 0.01 Fidelity = 0.5 Fidelity = 1.0
Drops I Drops 1 Drops 1 Drops Fidelity

0 (0.0) 1 3 (1.8) 1 169 (0.8) 1 7 (2.2) 0.73 (0.01)
0 (0.0) 5 (11.2) 169 (2.4) 25 (8.9) 0.76 (0.01)
0 (0.0) 3 (0.7) 325 (4.3) 23 (7.4) 0.50 (0.01)
0 (0.0) 0 (0.0) 12 (5.7) 14 (6.5) 0.98 (0.01)

This table gives the fidelity and number of frames dropped by xanhn under various strategies for each of the four reference waveforms, Note
that larger fidelity values represent better quality, while fewer dropped frames indicates better performance. Each observation is the mean of
five trials, with standard deviations given in parentheses. Notice that Odyssey achieves fidelity as good as or better than the JPEG(50) stmtegy
in all cases, but performs as well or better than JPEG(99) within experimentalerror.

Figure 10: Video Player Performance and Fidelity

JPEG(5) JPEG(25) JPEG(50) Full Quality Odyssey
Waveform Fidelity = 0.05 Fidelity = 0.25 Fidelity = 0.5 Fidelity = 1.0

Time (s) Time (s) Time (s) Time (s) Time (s) Fidelity
Ethernet - - - 0.20 co.ooj - -
step-up 0.25 (0.01) 0.30 (0.01) 0.29 (0.01) 0.46 (0.01) 0.35 (0.05) 0.78 (0.08)

Step-Down 0.25 (0.01) 0.30 (0.01) 0.29 (0.01) 0.46 (0.00) 0.35 (0.03) 0.77 (0.04)
Impulse-Up 0.27 (0.01) 0.33 (0.01) 0.34 (0.00) 0.71 (0.00) 0.42 (0.06) 0.63 (0.08)

Impulse-Down 0.24 (0.01) 0.27 (0.02) 0.29 (0.01) 0.34 (0.01) 0.36 (0.02) 0.99 (0.01)

This table gives the fidelity and average time for Netscape to fetch and display our test image under various strategies for each of the four refer-
ence waveforms. Note that larger fidelity numbers represent better quality! while smaller times indicate better performance. Each observation
is the mean of five trials; standard deviations axe. given in parentheses. Notice that Odyssey achieves a better fidelity than JPEG(S0) in nll cases
and, unlike the fullquality strategy, meets our performancegoal within experimental error for all cases.

Figure 11: Web Browser Performance and Fidelity

I
I Recognition Trme (sec.)
I Always I Always I

Waveform 1 Hybdd 1 Rem&e 1 Odyssey
Step-Up 1 0.80 (0.00) 1 0.91 (o.00) I 0.80 (0.00)

This table gives the average time, in seconds, for a recognition by
the speech application for each of the two static strategies as well as
the adaptive strategy for each of the four reference waveforms. Each
observation is the mean of five trials. Standard deviations are shown
in parentheses. Note that Odyssey correctly reproduces the always-
hybrid case, which is optimal at our reference bandwidth levels.

Figure 12: Speech Recognizer Performance

7llrLr
111 4

This IS-minutesynthetic trace models the bandwidth variation seen
by a user walking through a hypothetical&an setting. Each number
indicates the time duration of the correspondingsegmentin minutes.
The high and low bandwidths are as indicated in Section 6.1.3. The
user begins well-connected but soon enters aregion of intermittent
quality. She then enters the radio shadow caused by a large building,
and finally returns to good connectivity.

Figure 13: Bandwidth Variation in Urban Scenario

One could also imagine the networking layer of an opemt-
ing system immediately notifying applications when switching be-
tween nehvorking technologies. We have implemented this stmt-
egy, which we call blind-optimism, by passingthe theoretical band-
width to the viceroy at each transition via an upcall. The viceroy
then notifies any interested applications. This informadon is less
accurate becauseit does not reflect the impact of any other nppltcn-
tions, but is delivered without the delay of bandwidth discovery,

Figure 14presents the results of this experiment. The fidelity and
performance metrics as well as the application goals for this expcr-
iment are the same as in Section 6.2.2. The messageof Figure 14 is
that Odyssey’s centralized resource estimation provides significant
benefits over both laissez-faire and blind-optimism. By correctly
accounting for bandwidth competition, the Odyssey Web browser
and video player fetch data at lower fidelity, thus enabling all appll-
cations to come much closer to their performance goals. Odyssey
drops a factor of 2 to 5 fewer frames than the other strategies, and
Web pages are loaded and displayed roughly twice as fast, The rc-
sultingdecreasein network utilization improves speech recognition
time as well.

7 Related Work
To the best of our knowledge, Odyssey is the first system to simul-
taneously address the problems of adaptation for mobility, applica-
tion diversity, and application concurrency. It is the first effort to
propose and implement an architecture for application-aware adap-
tation that pays careful attention to the needs of mobile computing,
The identification of agility as a key attribute for mobile systems,
and the first approach to evaluating it, have both occurred in the
context of Odyssey.

At the same time, Odyssey has benefited considembly from much

284

This table demonstrates the benefit of Odyssey’s centraked resource managementby comparing it to two implementations of uncoordinated
resource management. The fidelity and performance metrics for this experiment am the same as in Figures 10-12. Notice that by degrading
the fidelity of fetched video and web data, Odyssey comes closer to each application% performance goals by factors of 2-5. Such a trade-off is
made possible by Odyssey’s more accurate estimation of bandwidth available to each application. Each observation in this table is the mean of
five trials, with standard deviations given in parentheses.

Figure 14: Performance and Fidelity of Concurrent Applications

previous work. A substantial debt is owed to Coda, which first
demonstrated that client resources could be effectively used to insu-
late users and applications from the vagaries of mobile information
access. The strategy of trading lowered consistency for improved
availability was shown to be effective and usable by Coda and re-
lated systems such as Ficus and Bayou. It was the recognition that
consistency represented a particular dimension of the broader con-
cept of fidelity that led to the design of Odyssey. Many aspects of
the Odyssey prototype, such as its implementation in user space and
its use of a log-based mechanism for monitoring network quality,
were based on positive experience with similar strategies in Coda.

Many systems together served as a backdrop to our thinking on
fidelity: the Rover toolkit; mobile Web software such as Mobi-
saic [40] and W4 [2]; software embodying concepts such as dy-
namic documents [14] and distillation [7]; commercial email pack-
ages such as Eudora; and numerous PDAs and pocket organiz-
ers. Examination of these systems also helped us identify an es-
sential missing ingredient in all of their designs: effective man-
agement of scarce resources across multiple applications. These
systems, in conjunction with Coda, helped us formulate our tax-
onomy of adaptation strategies - laissez-faire, application-aware,
and application-transparent.

The issues of resource reservation and guarantees lie at the heart
of real-time systems [24], and have become important in high per-
formance networking [8 J. These communities have recently applied
reservation techniques, with two changes, to mobile clients [20,27].
First, rather than reserving a particular quantity of a resource, they
reserve a range; the underlying system transparently adapts within
the range. Second, if the range is exceeded or the client moves, a
renegotiation involving some or all of the end-to-end path is initi-
ated.

In contrast to these systems, Odyssey abandons the reservation
model entirely; either the reserved bounds would be so wide as to
degenerate to application-transparent adaptation, or costly renegoti-
ations on behalf of a mobile host would be too frequent. Framed as
an end-to-end consideration,ultimate responsibility for coping with
changesin resourcelevels resides with applications. Odyssey’s role
is only to improve efficiency, agility and fairness by insulating ap-
plications from insignificant variations in resource levels, and by
providing a focal point for resource monitoring and allocation.

Recent adaptive systems, such as McCanne’s F&M [22] and In-
ouye’s video player [12], employ feedback-driven adaptation rather
than Odyssey’s measurement-based approach. Such systems scale
back quality, and hence resource consumption, when application
performance is poor, and they attempt to discover additional re-
sources by optimistically scaling up usage. Using application-
specific feedback relieves such systems of the need to calibrate to
individual resources, but this feedback is per-application. As this

paper has shown, this kind of laissez-faire approach does not pm-
vide for application concurrency, even though it works well for in-
dividual applications. Further, attempts to increase resource usage
amount to active rather than passive resource monitoring, a ques-
tionable strategy when bandwidth is scarce.

Finally, the installation of pieces of code at low levels of the sys-
tem to encapsulatespecializedknowledge about different data types
is a common practice in databases [IO]. The primary purpose of
such code is to improve disk management. The use of wardens in
Odysseyresembles this practice, but differs in that wardens support
multiple fidelity levels.

8 Future Work

We see many short-, medium-, and long-term tasks ahead of us.
The prototype improvements already alluded to will constitute our
short-term tasks. Specifically, we intend to incorporate adaptation
for objects other than images in the Web application of Section 5.2.
We also plan to add support for multiple levels of fidelity in the
speechapplication of Section 5.3.

In the medium term, we plan to enhance the prototype and gain
experience with it in real use. First, we will broaden support for
resource management to the fbll range of resources in Figure 3(c),
and correspondingly expand the scope of our evaluation. This will
enable Odyssey to support a broader class of applications, making
it attractive as a platform for serious use. We then expect to deploy
Odyssey to a small user community, and to gain empirical feedback
to complement our evaluation through controlled experiments.

Our long-term plans are more speculative. Currently, we expect
to work in three broad areas:

l The speech application of Section 5.3 suggests the importance
of being able to dynamically decide whether to ship data or
computation. This capability is currently provided in an ad
hoc manner by the speech warden. Extending Odyssey to pro-
vide full support for deciding between dynamicfunction or
data shipping would enable us to more thoroughly explore this
tradeoff in mobile computing.

l Search of distributed repositories performs poorly when mo-
bile because it lacks the temporal locality needed for caching
to be effective in compensating for poor bandwidth. We plan
to explore a solution that uses dynamic sets [35, 361 in con-
junction with support for dynamic function versus data ship-
ping.

l The design of adaptive mobile systems is currently a black art.
Developing systematic principles for their design, as well as
techniques for analyzing their agility and stability before they
are built. would be valuable.

285

9 Conchsion
The need for adaptation in mobile information access is now widely
accepted. In this paper, we put forth the view that application-aware
adaptation offers the most general and effective approach to ad-
dressing this need. The essence of our approach is a collaborative
partnership between applications and the system, with a clear sepa-
ration of concerns. We argue that previous approaches to adaptation
represent limiting cases of this general approach.

The Odyssey architecture supports application-aware adaptation
while paying careful attention to a variety of practical considera-
tions. Our prototype confirms the feasibility of realizing this archi-
tecture, and its ability to support a wide range of applications. Our
evaluation identifies agility as a key enabling attribute of an adap-
tive system, describes how to measure it, and reports on the agility
of the Odyssey prototype. The evaluation confirms that the pro-
totype does a good job of balancing performance and fidelity, and
confirms the importance of centralized resource management. At
the same time, it suggests avenues for further improvement. Over-
all, Odyssey promises to be a versatile and effective platform for
further research in mobile computing.

Acknowledgements *
Markus Baur and Jie Yang helped us considerably in understand-
ing and using Janus. Our use of xanim was made possible by Mark
Podlipec. Bob Baron provided valuable assistance with NetBSD on
innumerable occasions. Geoff Kuenning, David Maltz, Lily Mum-
mert, Wayne Sawdon, and our SOSP shepherd, Jeff Mogul, pro-
vided insightful comments that substantially improved this paper.
Finally, the careful and detailed feedback from our anonymous re-
viewers led to significant improvements in content and presentation.

References

111

PI

[31

141

PI

161

[71

Apple Computer Inc., Cupertino, CA. Newton Message Pad
Handbook, 1993.

J. F. Bartlett. W4 - The Wireless World Wide Web. In Pro-
ceedingsof the IEEE Workshop on Mobile Computing Systems
and Applications, Santa Cmz, CA, December 1994.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczyn-
ski, D. Becker, C.tChambers, and S. Eggers. Extensibility,
Safety and Performance in the SPIN Operating System. In
Proceedings of the I5th ACM Symposium on Operating Sys-
tem Principles, Copper Mountain, CO, December 1995.

R. C. Dorf, editor. The Electrical Engineering Handbook,
chapter 93: Control Systems. CRC Press, 1993.

D. Duchamp. Issues in Wireless Mobile Computing. In Pro-
ceedings of the Third IEEE Workshop on Workstation Operat-
ing Systems, Key Biscayne, FL, April 1992.

D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokemek
An Operating System Architecture for Application-Level Re-
source Management. In Proceedingsof the 15th ACM Sympo-
sium on Operating System Principles, Copper Mountain, CO,
December 1995.

A. Fox, S. D. Grlbble, E. A. Brewer, and E. Amir. Adapting to
Network and Client Variability via On-Demand Dynamic Dis-
tillation. In Proceedings of the Seventh International ACM
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Cambridge, MA, October
1996.

[a

PI

r101

[ill

WI

1131

P41

WI

WI

1171

1181

WI

tw

PU

WI

~31

WI

L. Georgiadis, R. Guerin, V. Pet-is, and R. Rajan. Efficient
Support of Delay and Rate Guarantees in an Internet. In Pro-
ceedings of the ACM SIGCOMM96 Conference, Stanford,
CA, August 1996.

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W,
O’Toole Jr. Semantic File Systems. In Proceedings of the
13th ACM Symposium on Operating System Principles, 199 1,

J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

Apple Computer Inc. Inside Macintosh: Quicktime. Addison-
Wesley Publishing Co., Reading, MA, 1993.

J. Inouye, S. Cen, C. Pu, and J. Walpole. System Support for
Mobile Multimedia Applications. In Proceedings of the 7th
International Workshop on Network and Operating Systems
Supportfor Digital Audio and video, St. Louis, MO, May
1997.

A. D. Joseph, A. F. delespinasse, J. A. Tauber, D, K. Gifford,
and M. F. Kaashoek. Rover. A Toolkit for Mobile Information
Access. In Proceedings of the I5th ACM Symposium on Op
erating System Principles, Copper Mountain, CO, December
1995.

M. F. Kaashoek,T. Pinckney, and J. A. ‘Ihuber. Dynamic Doc-
uments: Mobile Wireless Access to the WWW. In Proceed-
ings of the IEEE Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, December 1994.

R. H. Katz. Adaptation and Mobility in Wireless Information
Systems. IEEE Personal Communications, l(l), 1996,

R. H. Katz and E. A. Brewer. The Case for Wireless Ovcrlny
Networks. In SPIE Multimedia and Netlvorking Conference,
January 1996.

S. Keshav. Packet-Pair Flow Control. To appear in
IEEE/ACM Transactions on Networking.

J. J. Kistler and M. Satyanarayanan. Disconnected Opemtion
in the Coda File System. ACM Transactions on Computer
Systems, 10(l), Febmary 1992.

S.R. Kleiman. Vnodes: An Architecture for Multiple File Sys-
tem Types in Sun UNIX. In Summer Usenljr Conference Pro-
ceedings, 1986.

S. Lu, K.-W. Lee, and V. Bharghavan. Adaptive Service in
Mobile Computing Environments. In FijU~ IFIP International
Workshop on Quality of Service, New York, NY, May 1997.

A. Luotonen and K. Altis. World-Wide Web Proxies. Com-
puter Networks and ISDN Systems, 27, September 1994.

S. McCanne, V. Jacobsen, and M. Vetterli. Receiver-driven
LayeredMulticast. In ProceedingsoftheACMSIGCOMM’96
Conference,Stanford, CA, August 1996.

M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man. The Design and Implementation of the 4.4BSD Operat-
ing System. Addison Wesley, 1996.

C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity
Reserves for Multimedia Operating Systems. In Proceedings
of the IEEE International Conference on Multimedia Cornput.
ing and Systems, May 1994.

286

[25] L. B. Mummert. Exploiting Weak Connectivity in a Dis-
tributed File System. PhD thesis, Carnegie Mellon University,
School of Computer Science, 1996. CMU-CS-96-195.

1421 G. K. Wallace. TheJPEG Still Picture Compression Standard.
Communications ofthe ACM, 34(4), April 1991.

[26] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H.
Katz. Trace-Based Mobile Network Emulation. In Pro-
ceedings of ACM SIGCOMM’97 Conference, Cannes, France,
September 1997.

[27] S. Pope and P. Webster. QoS Support for Mobile Computing.
In F&h IFIP International Workshop on Quality of Service,
New York, NY, May 1997.

[28] G. J. Popek, R. G. Guy, T. W. Page, and J. S. Heidemann.
Replication in Ficus Distributed File Systems. In Proceedings
of the IEEE Workshop on Management of Replicated Data,
Houston, TX, November 1990.

[29] Qualcomm Inc., San Diego, CA. Eudora Macintosh User
Manual, 1993.

[30] 0. Rubin. The Design of Automatic Control Systems. Artech
House, Norwood, MA, 1986.

[31] M. Satyanarayanan. Mobile Information Access. IEEE Per-
sonal Communications, 3(l), February 1996.

[32] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A Highly Available
File System for a Distributed Workstation Environment. IEEE
Transactions on Computers, 39(4), April 1990.

[33] M. Satyanarayanan and B. Noble. The Role of Trace Modula-
tion in Building Mobile Computing Systems. In Proceedings
of the Sixth IEEE Workshop on Hot Topics in Operating Sys-
tems, Chatham, MA, May 1997.

[34] A. Smailagic and D. R Siewiorek. Modalities of Interaction
with CMU Wearable Computers. IEEE Personal Communi-
cations, 3(l), February 1996.

[35] D. C. Steere. Exploiting Non-Determinism in Set Iterators to
Reduce I/O Latency. In Proceedings of the 16th ACM Sym-
posium on Operating System Principles, Saint Malo, France,
October 1997.

[36] D. C. Steere. Using Dynamic Sets to Reduce the Aggregate
Latency of Data Access. PhD thesis, Carnegie Mellon Univer-
sity, School of Computer Science, 1997. CMU-CS-96-194.

[37] D. L. Tennenhouse, T. Turletti, and V. G. Bose. The Spec-
trumWare Testbed for ATM-based Software Radios. In IEEE
International Conferenceon Universal PersonalCommunica-
tions, September 1996.

[38] D. B. Terry, M. M. Theimer, K. Petersen, and A. J. Demers.
Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System. In Proceedings of the I&h ACM
Symposium on Operating System Principles, Copper Moun-
tain, CO, December 199.5.

[39] U.S. Robotics, Inc., Los Altos, CA. Pilot Handbook, 1996.
Part Number 423-0001.

[40] G. M. Voelker and B. N. Bershad. Mobisaic: An Informa-
tion System for a Mobile Wireless Computing Environment.
In Proceedings of the IEEE Workshop on Mobile Computing
Systems andApplications, Santa Cruz, CA, December 1994.

[41] A. Waibel. Interactive Translation of Conversational Speech.
IEEE Computer, 29(7), July 1996.

287

