
Multiprocessing and MapReduce
Kelly Rivers and Stephanie Rosenthal

15-110 Fall 2019

Announcements

• Exam on Friday

• Homework 5 check-in due Monday

Learning Objectives

• To understand the benefits and challenges of multiprocessing and
distributed systems

• To trace MapReduce algorithms on distributed systems and write small
mapper and reducer functions

Computers today have multiple cores

Quad-core processor

Multiple Cores vs Multiple Processors

Quad-core processor 4-processor computer

Cores vs Processors

• Multiple cores share memory, faster to work together

• Multiple processors have their own memory, slower to share info

• For this class, let’s assume that these two are pretty much equal

How do you determine how to run programs?

Multi-processing is the term used to describe running many tasks across
many cores or processors

Multiple CPUs: Multiprocessing

If you have multiple CPUs, you may execute multiple processes in
parallel (simultaneously) by running each on a different CPU.

Process 1:

Process 2:

run run run

run run run

on processor 1

on processor 2

time

step1 step2 step3

step1 step2

Multiple Cores and Multiple Computers:
Distributed Computing

• If you have access to multiple machines, you can split the work up into
many tasks and give each machine its own task

• The computers pass messages to each other to communicate
information in order to put the tasks together

Process 1:

Process 2:

run

run runrun

Multi-Processing

Run one task within each core

One task per core:

Microsoft Word

Firefox

Pyzo

Microsoft Excel

Core 1

Core 2

Core 3

Core 4

Multi-processing features

Just like multiple adders can run concurrently on a single core, multiple
cores can all run concurrently

Multi-processing features

Just like multiple adders can run concurrently on a single core, multiple
cores can all run concurrently

Just as single processors can multi-task, each core can multi-task

Multi-processing

Multi-processing allows a computer to run separate tasks within each
core (how do you determine which tasks go on which core?)

Many tasks in a core (multitasking):

Microsoft Word

Firefox

Pyzo

Microsoft Excel

Core 1

Core 2

Core 3

Core 4

Microsoft Word Microsoft WordPPT PPT PPT

Firefox Firefox Firefox Firefox

Multi-processing features

Just like multiple adders can run concurrently on a single processor,
multiple cores/processors can all run concurrently

Just as single processors can multi-task, each core can multi-task

Just like a single processor with different circuits, we can pipeline tasks
across processors

Multi-processing

Without pipelining on multiple cores

Leaves cores bored/not busy while taking extra time on one core

Start MS WordCore 1

Core 2

Core 3

Retrieve File

Start PPT

Display File

Retrieve File

Core 4

Display File

2 cores empty!!!

3 time steps 3 time steps 5 time steps

3 time steps 5 time steps 3 time steps

Takes 6 steps
before display

Takes 8 steps
before display

Multi-processing

With pipelining on multiple cores

Potentially takes less time to open programs, open data, etc

Requires that you send data between cores (expensive)

Start MS WordCore 1

Core 2

Core 3

Retrieve File

Start PPT

Display File

Retrieve FileCore 4

Display File

Takes 3 steps before display

Takes 5 steps before display

Writing Concurrent Programs

How can you write programs that can be split up and run concurrently?

Writing Concurrent Programs

How can you write programs that can be split up and run concurrently?

Some are naturally split apart like mergesort (one color per core):

Writing Concurrent Programs

How can you write programs that can be split up and run concurrently?

Some are naturally split apart like mergesort (one color per core):

38 27 43 3 9 82 10 15

38 27 43 3 9 82 10 15

43 338 27 10 159 82

3 4327 38 10 159 82

3 27 38 43 9 10 15 82

3 9 10 15 27 38 43 82

1 split, n moved items into 2 lists

2 splits, n moved items into 4 lists

2 splits, n moved items into 8 lists

4 sorts, n items moved

2 sorts, n items moved

1 sort, n items moved

1 processor, n*2*log(n) moves

Writing Concurrent Programs

How can you write programs that can be split up and run concurrently?

Some are naturally split apart like mergesort (one color per core):

38 27 43 3 9 82 10 15

38 27 43 3 9 82 10 15

43 338 27 10 159 82

3 4327 38 10 159 82

3 27 38 43 9 10 15 82

3 9 10 15 27 38 43 82

1 split, n moved items into 2 lists

1 split, n/2 moved into 2 lists

1 split, n/4 moved into 2 lists

n/4 items sorted

n/2 items moved

n items moved

Each processor does n+(n/2)+(n/4)+… < 2n steps

Think About It

How could you parallelize a for loop? Can you do it in all for loops?

Think About It

How could you parallelize a for loop? Can you do it in all for loops?

for i in range(len(L)): for i in range(len(L)):

print(L[i][0]) L[i] = L[i-1]

Pretty easy to parallelize Harder to parallelize

Each loop works on different data Each loop depends on the one before

Takeaways: Writing Concurrent Programs

How can you write programs that can be split up and run concurrently?

Some are naturally split apart like mergesort (one color per core)

Sometimes loops are also easy to split, but sometimes not

Many programs are not easy to split

Programmers spend a lot of time thinking about parallel code

It is very error prone and time-consuming

It still happens every day!

Scaling more than multiple cores

What does Google do with all of their data? Are they restricted to one
computer (maybe with many cores)?

No!

Massive Distributed Systems
(many networked computers)

Designing Distributed Programs

How do we get around the difficulty of writing parallel programs when
working on distributed systems?

Sometimes we can come up with an algorithm that IS easily dividable.

One way to handle these specific problems is an algorithm called MapReduce

invented at Google

allows for a lot of concurrency in the map step

MapReduce Algorithm

data1

data4

data3

data2

Mapper
Algorithm

Mapper
Algorithm

Mapper
Algorithm

Mapper
Algorithm

s1

s2

s3

s4

Computer 1

Computer 2

Computer 3

Computer 4

Divide data into pieces and run a mapper function on each piece. The mapper returns some summary
information (s1,s2,s3,s4) about the data. Each piece can be run on it’s own computer.

MapReduce Algorithm

data1

data4

data3

data2

Mapper
Algorithm

Mapper
Algorithm

Mapper
Algorithm

Mapper
Algorithm

Collector
Algorithm

[s1,s2,s3,s4]

s1

s2

s3

s4

The collector takes the summary information s from each computer and makes a list. The collector can run on
another computer or one of the same computers.

Computer

MapReduce Algorithm

data1

data4

data3

data2

Mapper
Algorithm

Mapper
Algorithm

Mapper
Algorithm

Mapper
Algorithm

Collector
Algorithm

Reducer
Algorithm

[s1,s2,s3,s4] result

result

s1

s2

s3

s4

The collector takes the summary information s from each computer and makes a list. The list is given to the
reducer algorithm which takes the list and returns a result. Typically the collector outputs the result at the end.

MapReduce Algorithm

data1

data2

data1

data2

Mapper
AlgorithmA

Mapper
AlgorithmA

Mapper
AlgorithmB

Mapper
AlgorithmB

Collector
Algorithm

Reducer
Algorithm

Reducer
Algorithm

[sA1,sA2]

[sB1,sB2] b_result

a_result

Dictionary
KeyA: a_result
KeyB: b_result

sA1

sA2

sB1

sB2

Since the mapper can be any function, sometimes we have different mappers do different things and collect all
results together. For example searching for many different words. In that case, the collector makes a list per
algorithm, and outputs a dictionary of results.

Example: Count Number of John’s in Phonebook

data1

data4

data3

data2

Count
Johns

Count
Johns

Count
Johns

Count
Johns

Collector
Algorithm

Sum [9,12,3,8] 32

32

9

12

3

8

Divide the phone book into parts data1,data2,data3,data4. Each mapper counts the number of John’s and output
as s1,s2,s3,s4 respectively. The collector gets all results, forms a list, and gives it to the reducer to sum the result.

Example: Count John’s and Mary’s

data1

data2

data1

data2

Count
John’s

Count
John’s

Count
Mary’s

Count
Mary’s

Collector
Algorithm

Sum

Sum[9,12]

[14,6] 20

21

Dictionary
John: 21
Mary: 20

9

12

14

6

Divide up the phonebook the same way. We run two different mappers on the same data (count John’s and count
Mary’s). The collector keeps track of which answer goes to which mapper, makes separate lists for each, and then
gives each list to a reducer. It outputs a dictionary of the results.

Example: Find 15-110 in course descriptions

Bio

Drama

CSD

Chem

Find
15-110

Find
15-110

Find
15-110

Find
15-110

Collector
Algorithm

Check if
any True

[F,F,T,F] True

True

False

False

True

False

Divide the course descriptions into parts - data1,data2,data3,data4. Each mapper checks if 15-110 is in there. The
collector gets all results into a list, and the reducer checks if any are True. If yes, return True, if not return False.

Why Does MapReduce Run Quickly?

Suppose we had an n problem such as counting all the John’s in a file. If I
ran the computation like usual, it would take me O(n) time. If I broke the
file into n/100 pieces (each file was 100 long), then it would run in O(1).

1

100

10000

1000000

100000000

1E+10

1E+12

1000 1000000 1000000000 1E+12

Runtime of Search with N={1000,1M,1B,1T} items

LinearSearch MapReduceSearch

Takeaways from MapReduce

If we can find an algorithm that works on a small portion of our data
(and that doesn’t need any other part of the data too), then we can
write a mapper function

Once we have a lot of mappers run, we can combine that data together
using a reducer function.

You can even parallelize multiple mappers at the same time!

Takeaways of Multi-processing

• Multi-processing and distributed systems help reduce the runtime of
programs by splitting up the work between cores, processors, or
computers

• A goal is also to make them fault-tolerant - when a computer fails, the
entire system doesn’t fail.

• We do this by re-running only the computation on the failed computer
and by backing up the same data across multiple machines so that the
data isn’t lost

Upsides of Multiprocessing

When using multiple machines, you can get much better performance
than by using a single machine alone

• This is how Google gets search results so fast- by using hundreds of computers
at once!

On a single machine, concurrency makes it possible to never waste time,
thereby increasing the 'throughput' of the computer

• Throughput is the amount of work a computer can do in a given time period

• Example: while your computer is waiting for you to select an option in a pop-
up menu, it might be handling work in another program in the background

Downsides of Multiprocessing

• It can be expensive to transfer a lot of data between different cores or
computers

The data has to move across more, longer wires

• Writing programs that run concurrent is much more complex, which
can lead to more bugs

• Debugging concurrent software can be very very difficult, since
behavior changes over multiple iterations!

It’s like when we debug random programs.

The randomness here is inherent in the scheduler.

