
Graphics
15-110 – Monday 09/23



Learning Goals

Use programming to specify algorithms to computers

• Use a graphics library to make programs that have visual output

• Use graphics to visualize algorithmic patterns



Tkinter is a Graphics Library

In order to start producing graphical results (instead of only text 
results), we need to import a new library that lets us draw shapes on 
the screen.

We'll import it a little differently than usual, in order to import 
everything into the library directly into the same namespace.

from tkinter import *



How Tkinter Works

In order to create graphics, we need to take a few 
preliminary steps. These will be provided to you as 
starter code, inside makeCanvas().

First, create a new window- that's the thing that 
pops up on the screen.

Second, create a new canvas- that's the thing we can 
draw graphics on.

Next, pack the canvas into the window- that tells the 
canvas to fill the whole window.

We'll do all our drawing in draw(). 

Finally, the last line will tell the window to stay open 
until we press the X button.

from tkinter import *

def draw(canvas):

pass

def makeCanvas(w, h):

root = Tk()

canvas = Canvas(root, width=w, height=h)

canvas.configure(bd=0, highlightthickness=0)

canvas.pack()

draw(canvas)

root.mainloop()

makeCanvas(400, 400)



Coordinates on the Canvas

The canvas is a two-dimensional grid of pixels, where each pixel can be filled with a 
dot of color. This grid has a pre-set width and height; the number of pixels from left 
to right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these 
coordinates are different from coordinates on normal graphs- they start at the top 
left corner of the canvas.

(0, 0) (width, 0)

(0, height) (width, height)

canvas



Drawing Basic Shapes



Drawing a rectangle

To draw a rectangle, we use the function create_rectangle. This 
function takes four required parameters: the x and y coordinates of the 
left-top corner, and the x and y coordinates of the right-bottom corner. 
The rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)



Drawing an oval

We can draw more shapes than just rectangles. To draw an oval, use 
create_oval. This function uses the same parameters as 
create_rectangle, where the coordinates mark the oval's bounding box. 

canvas.create_oval(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)



Drawing Squares/Circles

If you want to draw a square or a circle, you need to ensure that the 
width of the shape equals the height.

How can you do that? Make sure that (right - left) is equal to (bottom -
top)!

canvas.create_rectangle(50, 100, 150, 200)



Keyword Arguments Add Variety

With the basic parameters, we can only draw basic outlines of shapes. By 
adding keyword arguments, we can change the properties of these shapes!

Each keyword argument is associated with a default value, which is why we 
don't need to include them in every graphics call. To change that default 
value, include the keyword, followed by =, followed by the new value in the 
function call.

canvas.create_rectangle(50, 100, 150, 200, fill="green")



Keyword Argument - fill

The fill argument can be used on any shape. It 
uses a string (the name of the color) to change 
the color of the shape.

Note that when we draw shapes on top of each 
other, the one on top is the last one called. 
Order matters!

canvas.create_rectangle(40, 40, 80, 140, fill="red")

canvas.create_oval(30, 80, 150, 200, fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue")



Making New Colors

Interested in finding more Tkinter color names? There's a whole databank!

https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

If you want to use a color that doesn't have a name, you can make your 
own, using the RGB system we discussed in Data Representation.

Instead of a name, make a string "#RRGGBB", where you replace RR with 
the red value in hex, GG with green, and BB with blue. "#FF69B4" is hot 
pink!

canvas.create_oval(30, 80, 150, 200, fill="#FF69B4")

https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens


Keyword Argument - width

Another keyword argument is width, which 
specifies how many pixels wide the border 
of the shape should be.

Note that setting width to 0 removes the 
border completely.

canvas.create_rectangle(40, 40, 80, 140, width=5)

canvas.create_oval(30, 80, 150, 200, width=20, fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue", width=0)



Drawing Text

Drawing text on the canvas works a bit differently from drawing 
rectangles and ovals. We only specify one coordinate- the pixel where 
the text will be drawn.

canvas.create_text(200, 200, text="Hello World")

text is technically a keyword argument, but is necessary in order to 
draw text at all.



Keyword Argument - font

When drawing text, we can use the keyword argument font to 
change the appearance of the text.

font takes a string with one to three pieces of information- the 
font name, the font size, and the font type. 

You can find a full list of fonts and types here: 
https://effbot.org/tkinterbook/tkinter-widget-styling.htm#fonts

canvas.create_text(200, 200, text="Hello World!", 
font="Arial")

canvas.create_text(100, 100, text="This is fun!", 
font="Times 30")

canvas.create_text(300, 300, text="weewooweewoo", 
font="Courier 10 italic")

https://effbot.org/tkinterbook/tkinter-widget-styling.htm#fonts


Keyword Argument - anchor

The point used in the canvas.create_text call is actually 
an anchor for the text, to describe how it is drawn. That 
anchor defaults to the center of the text box, but we 
can change it to be any compass point instead.

Note that the anchor describes the point on the text 
box that will correspond to the (x, y) coordinate. Since 
CCC's anchor is "ne" (north-east), the upper-right 
corner of the text box is set to (400, 0).

canvas.create_text(200, 200, text="AAA", font="Times 30", 
anchor="center")

canvas.create_text(0, 200, text="BBB", font="Times 30",
anchor="w")

canvas.create_text(400, 0, text="CCC", font="Times 30",
anchor="ne")



Drawing Lines

Finally, to draw a line on the screen, 
we go back to using two coordinates. 
This time, they are the two 
endpoints of the line.

Note that we can again use fill and 
width here to modify the lines.

canvas.create_line(200, 300, 400, 350)

canvas.create_line(20, 100, 90, 300, fill="green")

canvas.create_line(100, 100, 300, 300, width=5)



Problem Solving with Graphics



Thinking Graphically

Now that we have all the basic shapes, we can start putting them 
together in different ways to make interesting images.

We'll generally do this by first determining where on the canvas a 
shape should be placed, then using logic and math to determine which 
coordinates correspond to that position.

We can also use guess-and-check to move shapes around by small 
amounts of pixels!



Centering a Shape

For example, say we want to place a 100px x 50px rectangle in the middle of a 
400px x 400px canvas. How do we find the coordinates?

We can find the center point logically- it's (200, 200). To find the upper-left and 
lower-right points, use the width and the height!

(200 - w/2, 200 - h/2)

(200 + w/2, 200 + h/2)

(150, 175)

(250, 225)



Drawing a Grid

As another example, let's say we want to draw a 10x10 grid of circles 
(like bubble wrap). We could do this by calling canvas.create_oval
100 times, but that's a lot of work!

Instead, we can use logic to determine how to compute the position of 
each circle based on the positions of the other circles.



Drawing a Row of Circles

First, let's simplify and just draw 10 circles in a row. If we want them to fill the 
canvas, how wide should each circle be?

circleSize = canvasWidth / 10

The first circle starts at x coordinate 0; the next is one circle over, so it starts at 
circleSize. The third circle has two circles before it, so it starts at 2*circleSize. 

If we number the circles from 0 to 9, each circle starts at n * circleSize.

Now we can write a graphics call for each circle in terms of its number. That means 
we can draw all ten circles using a loop!

canvasWidth = 400

circleSize = canvasWidth / 10

for n in range(10):

left = n * circleSize

canvas.create_oval(left, 0, left + circleSize, circleSize)



Turn a Row Into a Grid

To go from drawing a row of circles to a grid of circles, we just need to repeat the 
same logic, except with the y dimension as well. We can't just loop once- we need to 
use a nested loop.

We'll refer to a circle's position in the grid by its row (how many circles are above it) 
and its column (how many circles are to the left of it). Rows correspond to y; columns 
correspond to x. By looping over the rows and columns, we can draw all the circles!

canvasWidth = 400

size = canvasWidth / 10

for row in range(10):

top = row * size

for col in range(10):

left = col * size

canvas.create_oval(left, top, left + size, top + size)



Tkinter Can Do Even More!

There's plenty of things Tkinter can draw and plenty of additional 
keyword arguments that we haven't covered here.

If you're interested in learning more, check out the Tkinter
documentation: http://effbot.org/tkinterbook/canvas.htm

http://effbot.org/tkinterbook/canvas.htm


Learning Goals

Use programming to specify algorithms to computers

• Use a graphics library to make programs that have visual output

• Use graphics to visualize algorithmic patterns


