15-110 Recitation Week 07		10/15/2020
	15-110 Recitation 7

[bookmark: _efkjhnt4fmce]Recap
· Dictionaries
· Trees
· Sorting

[bookmark: _30j0zll]Reminders for Students
· Check 4 due Monday 10/17 @ Noon EDT
· Regrades for Check 3 and HW 3 due Tuesday 10/18 @ Noon EDT
· Exam 3 is Wednesday 10/19
· Small group review sessions
· Download the starter code for this recitation off the course website!
[bookmark: _x6sy1pohb9fm]

	Problems

[bookmark: _dw2icleilpjf]MERGESORT REVIEW
Trace merge sort on this list [7, 5, 2, 3, 9, 1]
What is the result of the first divide? Second? First merge? Answers/Notes

Does the runtime improve if the list is already sorted in ascending order? Descending order?

Thinking through runtime…
How many steps per pass? Answer
How many passes? Answer
Total # steps? Answer
Total complexity? Answer
[bookmark: _mv0cpd11wzy4]

DICTIONARY CODE WRITING: mostWins
We want to write a function for the following problem: Given a list of wins by CMU, Pitt, OSU, PennState’s, and another unspecified number of football teams, return the team with the most wins. There will be no ties.
mostWins(["OSU", "PennState", "PennState", "CMU", "OSU", "OSU", "Pitt"])
	-> "OSU"
mostWins(["PennState", "PennState", "MIT", "Stanford", "UF"])
	-> "PennState"

First, work through an O(n^2) solution in the starter file under mostWinsSlow! (Hint: use a list method to count the number of times a team appears in the list)def mostWinsSlow(L):

While this is a valid solution, we can solve this problem even quicker. To do this, we use dictionaries!

Dictionary Review:
· Key-Value Pairs: Dictionaries store information in key-value pairs - you can access specific values in the dictionary by looking up the key! It’s similar to how you use an integer index to look for a specific value in a list, except dictionary keys can be more complex IMMUTABLE types like strings.#create empty dictionary
d = dict() #or d={}

#add keys/values to dictionary
d["Jasmine"] = 32 # d -> {"Jasmine":32}
d["Darryl"] = 15 # d -> {"Jasmine":32, "Darryl":15}

#update or change values
d["Darryl"] = d["Darryl"] + 1 # d -> {"Jasmine":32, "Darryl":16}
d["Jasmine"] = 12 # d -> {"Jasmine":12, "Darryl":16}

· Why do we use dictionaries? We can search for a specific key in a dictionary in constant O(1) time (You’ll learn more about this on next Wednesday)! Once we know the key, we can get the corresponding value in constant time as well.
[bookmark: _v7ry9rgrbqoi]Now that you know more about dictionaries, work through an O(n) solution in the starter file under mostWinsFast! (Hint: store the counts of each team in a dictionary, and then look through all the teams (keys) in the dictionary to see which one has the greatest associated value)def mostWinsFast(L):

What is the runtime of this function mostWinsFast?

BINARY TREES CODE WRITING
In this class, the only trees you will be dealing with are binary trees:
· A binary tree is represented as a dictionary with 3 key-value pairs
· “value” - corresponds to the value of the current node
· “left” - the left subtree extending from the current node
· “right” - the right subtree extending from the current node
· If a given node has no left subtree, the “left” key will have a value of None - same goes for the right subtree of a given node

For the following two questions, you are given that the input tree will not be None.

printLeaves Write a function given a dictionary representation of a binary tree, that prints the leaves of the tree. Do not print the values of the non-leaf nodes of the tree.def printLeaves(tree):

countNodes Write a function given a dictionary representation of a binary tree, that returns the number of nodes in the tree.def countNodes(tree):

