
15-110 Exam2 Notes Sheet

Lists and Methods

List (list): ordered collection of data
values ([1, 'a'])
2D List: a list containing other lists

List operations: +, *, [], [:], in

List functions:
len(L) - # items in L

min(L)/max(L) - min/max item in L

sum(L) - sum of items in L

random.choice(L) - random item in L

Additional string functions:
ord(s) - ASCII number of s
chr(x) - ASCII value of int x

Method: a function called directly on a
data value

value.method(args)

Methods:
s.isdigit()/s.islower()/
s.isupper() - checks that property of s
L.count(item) - # times item appears
L.index(x) - index of x, error if missing
s.lower()/s.upper() - makes new
version of s that is lowercase/uppercase
s.replace(a, b) - new version of s with
a replaced by b

s.strip() - new version of s with extra
whitespace removed
s.split(delim) - makes a list of parts of
s separated by delim

delim.join(L) - makes a string of parts
of L joined by delim

References and Memory

Reference: an address in memory.
Connects a variable to its value.
Memory: sequences of bytes where data
values are stored.
Aliased: two variables that share the
same reference.

Mutable: a data type that can have data
values modified directly in memory, often
via methods.
Immutable: a data type that cannot be
modified directly in memory; all changes
must be made by changing the variable
reference.

Destructive: a type of action that updates
a data structure by modifying values in
memory.
Non-destructive: a type of action that
updates a data structure by moving the
reference to a new memory location with
new data values.

Destructive list methods:
L.append(val) - adds val to end
L.insert(pos, val) - adds val into
index pos

L.extend(L2) - adds elements from L2

to end of L
L.remove(val) - removes val from L

L.pop(pos) - removes item at index pos

from L

L.sort() - sorts L

random.shuffle(L) - shuffles L

L[index] = value - index assignment

15-110 Exam2 Notes Sheet

Recursion

Recursion: an algorithmic technique
where you solve a problem through use of
delegation instead of iteration.
Base case: a problem state that is so
simple, it can be solved immediately.
Recursive case: a problem state that can
be solved by recursively solving a smaller
version of the problem, then combining
that solution with the leftover part.

Simple Recursion Template

def recursiveFun(problem):

if ____: # base case

return ____

else: # recursive case

smaller = ____

result = recursiveFun(smaller)

return ____

RecursionError: an error that occurs when
a recursive function never reaches the
base case.

Multiple recursive calls: a technique
where you call the function multiple times
in the recursive case instead of just once.
Fibonacci and Towers of Hanoi use
multiple recursive calls to simplify problem
solving.

Search Algorithms I

Linear Search: a search algorithm where
you search a list for an item by checking
each item sequentially from left to right.

Binary Search: a search algorithm where
you search a sorted list for an item by
checking in the middle, then eliminating
half the list based on comparison to the
target. Repeat until target is found or
there is nothing left to search.

Dictionaries

Dictionary (dict): collection of key-value
pairs of items ({ "a" : 1, "b" : 2 }).
Dictionaries index on key, not position.

Dictionary Operations:
d[key] - evaluates to value paired w/ key
d[key] = value - add/update pair w/ key
key in d - check if pair w/ key is in d

Dictionary Functions/Methods
len(d) - # pairs in d

d.keys() - all keys in d

d.values() - all values in d

d.pop(key) - remove pair w/ key from d

For-iterable loop: a for loop over an
iterable value instead of a range.
Iterable: a type of value that can be
looped over directly. Often composed of
individual parts. Examples: strings, lists,
dictionaries

for item in iterableValue:

forBody

15-110 Exam2 Notes Sheet

Runtime and Big-O Notation

Best case: an input that leads to an
algorithm taking the least steps possible
Worst case: an input that leads to an
algorithm taking the most steps possible

Function family: a set of functions that all
grow at a similar rate (eg, linear functions)
expressed in a simplified format.
Common function families: constant,
logarithmic, linear, quadratic, exponential

Big-O: a representation of the function
family of the worst-case scenario for a
specific algorithm. Represented as
O(runtime).
Common Big-O runtimes: O(1), O(log n),
O(n), O(n2), O(2n)

Linear Search: O(n)
Binary Search: O(log n)

Calculating Big-O runtime: sequential and
conditional statements are added
together. Loops multiply number of
iterations * work done by the body.

Trees

Tree: a data structure composed of nodes
holding values that are connected
hierarchically in a recursive manner.
Binary Tree: a tree where each node has
at most two children, called left and right

Parent: the node connected directly above
the current node
Children: the nodes connected directly
below the current node

Root: the topmost node of a tree (with no
parent)
Leaf: a node with no children

Our tree format is a recursively nested
dictionary:
{ "contents" : nodeValue,

"left" : leftChildSubtree,

"right" : rightChildSubtree }

If there is no left/right child, the key maps
to None instead.

The common algorithm structure for trees
is recursive:
Base case: when the tree is a leaf, or an
empty tree
Recursive Case: recursively call the
function on the left child and right child (if
they exist) and combine the results with
the current node

Graphs

Graph: a data structure composed of
nodes holding values, connected by
edges (sometimes with values)

Neighbors: a pair of nodes connected by
an edge.
Directed: a graph where edges can go
from one node to another and not vice
versa. Opposite is undirected.
Weighted: a graph where edges have
values (called weights). Opposite is
unweighted.

Our graph format is a dictionary mapping
nodes to lists of neighbors:
{ nodeValue : [neighborValue],

... }

15-110 Exam2 Notes Sheet

If the graph is weighted, neighbors are
represented as value-weight pairs:
{ node : [[neighborValue, weight]],

... }

Search Algorithms II

Binary search tree (BST): a tree for which
the left child of every node (and all its
children, etc) are strictly less than the
node, and the right child of every node
(and its children, etc) are strictly greater
than the node.
Binary search: an algorithm that can be
performed on a BST by making just one
recursive call - to the left if the target is
smaller than the root, to the right if larger.
Binary search runtime: binary search on a
BST runs in O(log n) if the tree is
balanced (all left and right subtree pairs
are ~ the same size), O(n) if unbalanced.

Hashed Search: a search algorithm where
you search a hashtable for an item by
running a hash function on the item, going
to the appropriate bucket, and searching
that bucket for the item. O(1) when used
with a good hash function and a
large-enough hashtable.
Hash function: a function that maps an
immutable value to an integer. Must be
consistent, and must generally map
different values to different results.

Tractability

Brute force approach: an algorithmic
strategy - solve a problem by generating
all possible solutions and checking them.

Travelling Salesperson: a problem where
you find the shortest route across all
nodes in a graph. Runs in O(n!).
Puzzle Solving: a problem where you
solve a jigsaw puzzle by finding an
arrangement of pieces that fits all
constraints. Runs in O(n!).
Subset Sum: a problem where you find a
subset of numbers in a list that sums to a
target number. Runs in O(2n).
Boolean Satisfiability: a problem where
you find a combination of inputs that
makes a circuit output 1. Runs in O(2n).
Exam Scheduling: a problem where you
find an arrangement of exams across k
timeslots such that no student has a
conflict. Runs in O(kn).

Tractable: a problem is tractable if its
worst-case runtime can be represented as
a polynomial equation. Opposite is
intractable.

Complexity class: a collection of function
families that have similar efficiency for
certain tasks and are bounded by (no
worse than) a certain runtime.

P: a complexity class of problems that are
tractable to solve
NP: a complexity class of problems that
are tractable to verify
P vs NP: a big unsolved problem in CS.
Are the complexity classes P and NP the
same? We don't know!

Heuristic: a search technique used to find
good-enough solutions to problems.
Generates scores to choose next steps
instead of using brute force.

