
Lists and Recursion
(yay!)

Lists

List Basics

● Data structure that holds ordered set of data values.
○ Ex: L = [“I”, “love”, 15110]
○ Lists in Python can contain different data types

● Indexing: we can access each data values based on numerical position in list.
○ L[0] = “I”
○ L[-1] = 15110

● Slicing: we can access sublists within lists!
○ L[a:b:c], where a= start point (inclusive), b = end point (exclusive), c = step size
○ L[0:2] = [“I”, “love”]
○ L[1:] = [“love”, 15110]

● List Looping
○ for elem in L: #use this when you don’t know/care about list indexes
○ For in in range(len(L)) #use this when you do want to have access to list indexes

List Basics (cont’d.)

● List concatenation and basic methods. Note differences!
○ Adding Lists: [“Flako”, “Gabriel”] + [“Minjoo”, “Shivi”] = [“Flako”, “Gabriel”, “Minjoo”, “Shivi”]
○ L.append(x): Adds an element x to end of list. Returns None.
○ L.extend(A): Adds all elements in list A to the end of list L. Returns None.
○ L.pop(i): Removes the ith element from list L. Returns value at popped index.

● Other helpful methods to review…
○ len(L) → length of list
○ min(lst) → smallest element of list
○ max(lst) → largest element in list
○ sum(lst) → sum of all elements in list
○ random.choice(lst) → returns random value in list

List Aliasing / Destructive and Non-Destructive

● Variables aliased when they are set equal
● Destructive: modify all aliased values also

○ Append, extend, insert, remove, pop
● Non-destructive: makes new list/new reference, breaks alias

○ Concatenation, slicing
○ Note that lst += and lst = lst + behaves differently

Destructive vs. Non-destructive Example

Write the non-destructive version of the following function:

def removeDuplicates(L):

index = 0
while index < len(L):

item = L[index]
if L.count(item) > 1:

L.remove(item)
index += 1

return L

List Code Tracing Example 1

Trace through the code below. What are the values of A, B, C, D, E, and F? Which share the
same memory space?
A=’cat’
B=A
A=’dog’
C=[1,2,3,4,5]
D=C[::]
E=C
D.insert(0, 10)
E[1]=’pie’
F=C.remove(1)

Solution

A=’dog’
B=’cat’
C=[’pie’,3,4,5]
D=[10,1,2,3,4,5]
E=[‘pie’,3,4,5]
F=None

C and E are aliased/same memory space.

List Code Tracing Example 2

def mys(lst):
newLst = lst
i = 0
while i < len(newLst):

if type(lst[i]) != str:
newLst.pop(i)

else:
i = i+1

print(newLst)
lst = ["a", "hey", 3, "d", True]
mys(lst)

Solution

What does the function print with the function call? ["a", "hey", "d"]

In general terms, what does this function do? Given a list, it prints
the list with any non-string elements removed

2D Lists

● 2D lists are lists of lists
○ Outer list elements are lists
○ Inner list elements are individual values

● Index with double brackets
● Nested loops to iterate through both lists

2D Lists

cities = [["Pittsburgh", "Allegheny", 302407],

["Philadelphia", "Philadelphia", 1584981],

["Allentown", "Lehigh", 123838],

 ["Erie", "Erie", 97639],

["Scranton", "Lackawanna", 77182]]

a. Cities[1] = ["Philadelphia", "Philadelphia", 1584981]
b. Cities[1][0] = “Philadelphia”
c. What happens if we run cities[3][0] = “Harrisburg”

2D List Code Writing Example

Let’s say that you are in charge of processing student information from a poll. You receive your
information in the form of a list of strings, as so:

#lst=[name, favorite_color, age, favorite_season, has_pet]
lst=[“Michael, blue, 25, summer, True”,

 “Lily, green, 18, winter, False”]

You need to convert this list so that it is useful for your needs. Write a function, pollAnswers, that
takes in the list lst and transforms it into a 2D list, like so:
lst_2d=[

[‘Michael’, ‘blue’, ‘25’, ‘summer’, ‘True’],
[‘Lily’, ‘green’, ‘18’, ‘winter’, ‘False’]
]

2D List Code Writing (cont’d.)

How would you use that same lst (modified by pollAnswers) and now specified by
the variable lst_2d (lst_2d=lst), in order to find/return the average age of the
people you have polled? Write it in the function findAverage, which takes in the
parameter lst_2d.

Solution

def findAverage(lst_2d):
sum=0
For i in range(len(lst_2d)):

sum+=int(lst_2d[i][2])
Return sum/len(lst_2d)

Recursion

Recursion Basics

● General algorithm:
○ Base case of when the input is the smallest value
○ Determine how to make the problem slightly smaller
○ return *something* combined with recursive call on smaller problem

● Base case builds the answer by ending the continual recursive calls with
a solid return value

● Return types must match!!
● Infinite recursion → recursion error. Don’t forget to make the problem

smaller!!!

Recursion and Binary Search

● Multiple recursive calls become recursive call trees
● Examples:

○ Towers of Hanoi
○ Fibonacci

● Recursive binary search divides the amount needed to search through by
half, given that the input list is sorted

○ If middle is less than target, search to the right
○ If middle is greater than target, search to the left

● Base case for binary search? How is problem made smaller?
● binarySearch([2, 4, 6, 9], 9) = ?
● binarySearch([2, 4, 6, 9, 10], 0) = ?

Recursion Code Trace

Trace the following function. What is this function doing in general?

def x(n):
 if n == 0:
 return 0
 else:
 return n % 10 + x(int(n / 10))

print(x(345))
print(x(45))

Solution

x(345) = 12, x(45) = 9

The function finds the sum of the digits of a number.

Recursive Function Writing Example

Write a recursive function reverseOdds that takes in a list of integers lst and a an
integer target as input and returns all of the integers in lst less than target in
reverse order. For example,

reverseOdds([1,2,3,4,5,6], 4) returns [3,2,1]
reverseOdds([27,13,9,15,12,34], 14) returns [12,9,13]
reverseOdds([2,4,6,8,10],1) returns []

Solution

def reverseOdds(lst, target):
 if lst == []:
 return []
 else:
 first = lst[0]
 rest = lst[1:]
 result = reverseOdds(rest, target)
 if first < target:
 return result + [first]
 else:
 return result

Thanks for coming! :D
Other things to review:

- HW Problems
- Lecture Notes
- Practice Tests
- Small Group Problems
- These slides

