
15-110 Exam 2 Review

Brought to you by the TAs! :)

Dictionaries

Dictionaries

- Dictionaries store data in pairs by mapping keys to values.
- We'll be able to access the value by looking up the key, like how we

can access a list value using its index.
- Keys must be immutable (numbers, strings, booleans)
- Values can be any type of data
- Making empty dictionary: d = {} or d = dict()
- Looking through a dictionary

for <itemVariables> in <iterableValue>:

<itemActionBody>

Basic Dictionary Implementation

d = { “apples” : 3, “pears” : 4 }

Getting values:

- d[“apples”] => give us the value
pair 3

- len(d) => gives us length of
dictionary

- d[“ice cream”] => key error because
ice cream is not a key in d

Adding/Removing values:

- d[“bananas”] = 7
=> adds new key-value pair

- d[“apples”] = d[“apples”] + 1
=> updates key-value pair

- d.pop(“pears”) => destructively
removes

Searching:

- “apples” in d => returns true
- “kiwis” in d => returns false

Trees

- Trees hold hierarchical data => data occurs at different levels and are
connected

- Core parts of a tree include: nodes, children, the root, and leaves
- A node has exactly one parent, a parent can have any number of

children
- Trees are recursive!

- Each node’s children are subtrees which are trees again
- Base case - can be either a leaf or empty tree
- Recursive case - makes problem smaller by repeating on the children

- Binary Trees: have at most 2 children per node

Coding with Trees

- Trees are implemented by recursively nested dictionaries
- Each node of the tree will be a dictionary that has three keys

- First key is the string “contents” => value in the node
- Second key is “left” => either maps to node if node has left child OR None if there is no

left child
- Third key is “right” => either maps to node if node has right child OR None if there is no

right child

- Using recursion when coding with trees
- Base case: when current node is a leaf and we need to do something its value
- Recursive case: call function recursively on left child and then call again on right

child, if they exist.

Graphs

- Graphs are like trees, but any
node can be connected to any
other node

- Core parts of a graph: nodes,
edges, neighbors

- Edges can be weighted or
unweighted

- Edges can be directed or
undirected

A

B

E

H

C

G

D F

5

1

23

4

6

7

8

9

Weighted and
directed Weighted and undirected

Coding with Graphs

- The keys of the dictionary will be the values of the nodes. Each node
maps to a list of its adjacent nodes (neighbors), the nodes it has a direct
connection with.

- Weighted graphs have values associated with the edges. We need to
store these values in the dictionary also

- We'll do this by changing the list of adjacent nodes to be a 2D list. Each of the inner
lists represents a node/edge pair, so it has two values – the adjacent node's value and
the weight of the edge.

Big O

Best Case & Worst Case

● Best case:
○ an input of size n that results

in the algorithm taking the
least steps possible.

● Worst case:
○ an input of size n that results

in the algorithm taking the
most steps possible.

Consider a function that takes in a list of
strings as an input and uses linear search to
return the second occurence of the string, "a"
in the list.

What's the best case?

What's the worst case?

Big O

● When determining which Big O
represents the actions taken by an
algorithm, we say that n is the size
of the input
○ For a list, that's the number of

elements
○ For a string, that's the number

of characters

● To determine an algorithm's Big O,
you ignore constant factors and
smaller terms
○ 3n + 8 is just O(n)
○ 4n^2 is just O(n^2)

● Big O is generally the worst case
runtime of an algorithm

How to Calculate Big O

● Calculate the Big-O of each
line/action of a function
○ Add sequential and conditional

statements
○ Multiply the actions within a

loop by the number of iterations
performed

○ Get rid of constants and smaller
terms!

● Watch out for built-in functions!
○ L.count(elem) # O(n)
○ L.remove(elem) # O(n)
○ L.pop(0) # worst case O(n)

Practice:

def f(L):
 result = []
 for i in range(len(L)):
 for j in range(5):
 if L[i] * j == 20:
 x = L.pop(0)
 result.append(x)
 return result

Linear Search & Binary Search

def linSearch(lst, target):
 if len(lst) == 0:
 return False
 elif lst[0] == target:
 return True
 else:
 return linSearch(lst[1:], target)

O(n)

def binSearch(lst, target):
 if lst == []:
 return False
 else:
 mid = len(lst) // 2
 if lst[mid] == target:
 return True
 elif target < lst[mid]:
 return binSearch(lst[:mid], target)
 else: # lst[mid] < target
 return binSearch(lst[mid+1:], target)

O(logn) comparisons, what about
runtime?

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O()
for c in ‘aeiou’: #O()

if s.find(c)==True: #O()
count+=1 #O()

if count>3: #O()
for i in range(count**2): #O()

print(i) #O()
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O()

if s.find(c)==True: #O()
count+=1 #O()

if count>3: #O()
for i in range(count**2): #O()

print(i) #O()
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O()
count+=1 #O()

if count>3: #O()
for i in range(count**2): #O()

print(i) #O()
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O(N)
count+=1 #O()

if count>3: #O()
for i in range(count**2): #O()

print(i) #O()
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O(N)
count+=1 #O(1)

if count>3: #O()
for i in range(count**2): #O()

print(i) #O()
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O(N)
count+=1 #O(1)

if count>3: #O(1)
for i in range(count**2): #O()

print(i) #O()
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O(N)
count+=1 #O(1)

if count>3: #O(1)
for i in range(count**2): #O(1)

print(i) #O()
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O(N)
count+=1 #O(1)

if count>3: #O(1)
for i in range(count**2): #O(1)

print(i) #O(1)
return count #O()

Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O(N)
count+=1 #O(1)

if count>3: #O(1)
for i in range(count**2): #O(1)

print(i) #O(1)
return count #O(1)

Example Problem

Come up with runtime of each line and
provide overall runtime

OVERALL RUNTIME: O(N)

def f(s): #N == len(s)
count=0 #O(1)
for c in ‘aeiou’: #O(1)

if s.find(c)==True: #O(N)
count+=1 #O(1)

if count>3: #O(1)
for i in range(count**2): #O(1)

print(i) #O(1)
return count #O(1)

Tractability

Is the problem tractable?

● A problem is tractable if it has a
reasonably efficient runtime

● "Reasonably efficient" means the
runtime can expressed as
polynomial equation
○ Tractable: O(1), O(logn), O(n),

O(n^2), O(n^k)
○ Intractable: O(2^n), O(k^n),

O(n!)

Why does it matter?

For some problems, we have to use a
brute force approach (generating every
possible solution and checking each of
the generated solutions to see if any of
them work for the problem's
constraints)

If the size of an input is extremely
large, using an algorithm a runtime
that is not in polynomial time can take
far too long.

Complexity Classes

● P is the set of problems that can be
○ Solved in polynomial time

(tractable)
○ Checked in polynomial time

(tractable)
● NP is the set of problems that can

be
○ Checked in polynomial time

(tractable)

Why does it matter? If P = NP, we could
solve a lot of difficult problems.

Heuristics

● A heuristic is a technique used to
find a solution that is "good
enough"

● Typically used for NP problems
where finding the solution is
intractable

● A heuristic can rank potential next
steps to help with each decision

Example:

Consider a weighted graph with nodes
consisting of CMU building names and
edges having weights representing the
distances between the buildings.

Problem: Find the best possible path
from Gates to Hall of Arts.

Heuristic: Always trying to take the
shortest path first (edge with the lowest
weight)

