
15-110 Exam 2 Review

Brought to you by the TAs! :)



Dictionaries



Dictionaries

- Dictionaries store data in pairs by mapping keys to values.
- We'll be able to access the value by looking up the key, like how we 

can access a list value using its index.
- Keys must be immutable (numbers, strings, booleans)
- Values can be any type of data
- Making empty dictionary: d = {} or d = dict()
- Looking through a dictionary

for <itemVariables> in <iterableValue>:

<itemActionBody>



Basic Dictionary Implementation

d = {  “apples” : 3, “pears” : 4  }

Getting values: 

- d[“apples”] => give us the value 
pair 3

- len(d) => gives us length of 
dictionary

- d[“ice cream”] => key error because 
ice cream is not a key in d

Adding/Removing values:

- d[“bananas”] = 7                                    
=> adds new key-value pair

- d[“apples”] = d[“apples”] + 1               
=> updates key-value pair

- d.pop(“pears”) => destructively 
removes

Searching:

- “apples” in d => returns true
- “kiwis” in d => returns false



Trees

- Trees hold hierarchical data => data occurs at different levels and are 
connected

- Core parts of a tree include: nodes, children, the root, and leaves
- A node has exactly one parent, a parent can have any number of 

children
- Trees are recursive!

- Each node’s children are subtrees which are trees again
- Base case - can be either a leaf or empty tree
- Recursive case - makes problem smaller by repeating on the children

- Binary Trees: have at most 2 children per node



Coding with Trees

- Trees are implemented by recursively nested dictionaries
- Each node of the tree will be a dictionary that has three keys

- First key is the string “contents” => value in the node
- Second key is “left” => either maps to node if node has left child OR None if there is no 

left child
- Third key is “right” => either maps to node if node has right child OR None if there is no 

right child

- Using recursion when coding with trees
- Base case: when current node is a leaf and we need to do something its value
- Recursive case: call function recursively on left child and then call again on right 

child, if they exist. 



Graphs

- Graphs are like trees, but any 
node can be connected to any 
other node

- Core parts of a graph: nodes, 
edges, neighbors

- Edges can be weighted or 
unweighted

- Edges can be directed or 
undirected
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Coding with Graphs

- The keys of the dictionary will be the values of the nodes. Each node 
maps to a list of its adjacent nodes (neighbors), the nodes it has a direct 
connection with.

- Weighted graphs have values associated with the edges. We need to 
store these values in the dictionary also

- We'll do this by changing the list of adjacent nodes to be a 2D list. Each of the inner 
lists represents a node/edge pair, so it has two values – the adjacent node's value and 
the weight of the edge.



Big O



Best Case & Worst Case

● Best case:
○ an input of size n that results 

in the algorithm taking the 
least steps possible.

● Worst case:
○ an input of size n that results 

in the algorithm taking the 
most steps possible.

Consider a function that takes in a list of 
strings as an input and uses linear search to 
return the second occurence of the string, "a" 
in the list.

What's the best case?

What's the worst case?



Big O

● When determining which Big O 
represents the actions taken by an 
algorithm, we say that n is the size 
of the input
○ For a list, that's the number of 

elements
○ For a string, that's the number 

of characters

● To determine an algorithm's Big O, 
you ignore constant factors and 
smaller terms
○ 3n + 8 is just O(n)
○ 4n^2 is just O(n^2)

● Big O is generally the worst case 
runtime of an algorithm



How to Calculate Big O

● Calculate the Big-O of each 
line/action of a function
○ Add sequential and conditional 

statements
○ Multiply the actions within a 

loop by the number of iterations 
performed

○ Get rid of constants and smaller 
terms!

● Watch out for built-in functions!
○ L.count(elem) # O(n)
○ L.remove(elem) # O(n)
○ L.pop(0) # worst case O(n)

Practice:

def f(L):
  result = []
  for i in range(len(L)):
    for j in range(5):
      if L[i] * j == 20:
        x = L.pop(0)
        result.append(x)
  return result



Linear Search & Binary Search

def linSearch(lst, target):
  if len(lst) == 0:
    return False
  elif lst[0] == target:
    return True
  else:
    return linSearch(lst[1:], target)

O(n)

def binSearch(lst, target):
  if lst == [ ]:
    return False
  else:
    mid = len(lst) // 2
    if lst[mid] == target:
       return True 
    elif target < lst[mid]:
       return binSearch(lst[:mid], target)
    else: # lst[mid] < target
      return binSearch(lst[mid+1:], target)

O(logn) comparisons, what about 
runtime?



Example Problem

Come up with runtime of each line and
provide overall runtime def f(s): #N == len(s)

count=0 #O()
for c in ‘aeiou’: #O()

if s.find(c)==True: #O()
count+=1 #O()

if count>3: #O()
for i in range(count**2): #O()

print(i) #O()
return count #O()
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Example Problem
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Tractability



Is the problem tractable?

● A problem is tractable if it has a 
reasonably efficient runtime

● "Reasonably efficient" means the 
runtime can expressed as 
polynomial equation
○ Tractable: O(1), O(logn), O(n), 

O(n^2), O(n^k) 
○ Intractable: O(2^n), O(k^n), 

O(n!)

Why does it matter?

For some problems, we have to use a 
brute force approach (generating every 
possible solution and checking each of 
the generated solutions to see if any of 
them work for the problem's 
constraints)

If the size of an input is extremely 
large, using an algorithm a runtime 
that is not in polynomial time can take 
far too long.



Complexity Classes

● P is the set of problems that can be
○ Solved in polynomial time 

(tractable)
○ Checked in polynomial time 

(tractable)
● NP is the set of problems that can 

be
○ Checked in polynomial time 

(tractable)

Why does it matter? If P = NP, we could 
solve a lot of difficult problems.



Heuristics

● A heuristic is a technique used to 
find a solution that is "good 
enough"

● Typically used for NP problems 
where finding the solution is 
intractable

● A heuristic can rank potential next 
steps to help with each decision

Example:

Consider a weighted graph with nodes 
consisting of CMU building names and 
edges having weights representing the 
distances between the buildings.

Problem: Find the best possible path 
from Gates to Hall of Arts.

Heuristic: Always trying to take the 
shortest path first (edge with the lowest 
weight)


