
Recursion, Big-O, Tractability, &
Search Algorithms

Brought to you by your TA's!

Recursion

Recursion

1. Make the problem smaller
2. Get the smaller problem's solution

a. Pretend that recursion
automatically solves the
problem correctly!

3. Combine leftover solution with
smaller problem's solution

Try it: Finding the sum of a list of ints

Recursion

1. Make the problem smaller
2. Get the smaller problem's solution

a. Pretend that recursion
automatically solves the
problem correctly!

3. Combine leftover solution with
smaller problem's solution

Try it: Finding the sum of a list of ints

1. Smaller problem: lst[1:]

8 2 6 16 35 219

Recursion:

1. Make the problem smaller
2. Get the smaller problem's

solution
a. Pretend that recursion

automatically solves the
problem correctly!

3. Combine leftover solution with
smaller problem's solution

Try it: Finding the sum of a list of ints

1. Smaller problem: lst[1:]

2. 2 + 6 + 9 + 16 + 35 + 21 = 89
 getSum(lst[1:]) # Smaller Result

8 2 6 16 35 219

Recursion

1. Make the problem smaller
2. Get the smaller problem's solution

a. Pretend that recursion
automatically solves the
problem correctly!

3. Combine leftover solution with
smaller problem's solution

Try it: Finding the sum of a list of ints

1. Smaller problem: lst[1:]

2. 2 + 6 + 9 + 16 + 35 + 21 = 89
 getSum(lst[1:])

3. 8 + 89 = 97 lst[0] + lst[1:]

8 2 6 16 35 219

898

Recursion: Get Sum of List

● Base Case(s)
○ Length of list is 0 or 1

● Recursive Case
○ smallerProblem = lst[1:]
○ smallerResult =

getSum(smallerProblem)
○ add it to the rest of the input

■ lst[0] + smallerResult

def getSum(lst):
if len(lst) == 0:

return 0
elif len(lst) == 1:

return lst[0]
else:

smallerProblem = lst[1:]
smallerResult = getSum(lst[1:])
return lst[0] + smallerResult

Multiple Recursive Calls: Fibonacci

● Fibonacci Numbers
○ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34…

● Two Base Cases
○ 0th number: 0
○ 1st Number: 1

● Recursive Case
○ Adding the two numbers that

came before to get the next
number

def fib(n):
if n == 0 or n == 1:

return n
else:

return fib(n-1) + fib(n-2)

Recursion Reminders

● You have to call the function within its own body for it to be recursion
○ Make sure you're making the problem smaller when you're calling it

■ Otherwise it'll go on forever
● Your return types have to match!

○ Your base can't return an int while your recursive case returns a list

Big-O

Big-O

● Big-O: runtime it takes to execute a program based on its input
○ Simplest and tightest bound

■ O(n + 3) -> O(n)
■ O(n^2 + n) -> O(n^2)

● Common Big-O classes:
○ O(1)
○ O(logn)
○ O(n)
○ O(n^2)
○ O(2^n)

Determining Big-O

● For each line of a function, determine the runtime
○ Common O(1): print, return, >, <, initializing variables
○ Common O(n): in, .index()
○ When looking at loops:

■ Identify how many times the loop iterates
■ Identify the runtime of each line in the loop
■ Multiply the number of times the loop iterates by the longest runtime in the loop

● Runtime of the whole function is the runtime of the longest step

Loops Example
def f(number):

for num in range(number):

print(i)

def g(number):

L = []

for num in range(number):

if num in L:

L.append(num)

return L

Loops Example
def f(number):

for num in range(number): O(n)

print(i)

def g(number):

L = []

for num in range(number):

if num in L:

L.append(num)

return L

Loops Example
def f(number):

for num in range(number): O(n)

print(i) O(1)

def g(number):

L = []

for num in range(number):

if num in L:

L.append(num)

return L

Loops Example
def f(number):

for num in range(number): O(n)

print(i) O(1)

def g(number):

L = []

for num in range(number):

if num in L:

L.append(num)

return L

O(n) * O(1) = O(n)
for the loop

Loops Example
def f(number):

for num in range(number): O(n)

print(i) O(1)

def g(number):

L = [] O(1)

for num in range(number):

if num in L:

L.append(num)

return L

O(n) * O(1) = O(n)
for the loop

Loops Example
def f(number):

for num in range(number): O(n)

print(i) O(1)

def g(number):

L = [] O(1)

for num in range(number): O(n)

if num in L:

L.append(num)

return L

O(n) * O(1) = O(n)
for the loop

Loops Example
def f(number):

for num in range(number): O(n)

print(i) O(1)

def g(number):

L = [] O(1)

for num in range(number): O(n)

if num in L: O(n)

L.append(num)

return L

O(n) * O(1) = O(n)
for the loop

Loops Example
def f(number):

for num in range(number): O(n)

print(i) O(1)

def g(number):

L = [] O(1)

for num in range(number): O(n)

if num in L: O(n)

L.append(num) O(1)

return L

O(n) * O(1) = O(n)
for the loop

Loops Example
def f(number):

for num in range(number): O(n)

print(num) O(1)

def g(number):

L = [] O(1)

for num in range(number): O(n)

if num not in L: O(n)

L.append(num) O(1)

return L O(1)

O(n) * O(1) = O(n)
for the loop

Loops Example
def f(number):

for num in range(number): O(n)

print(i) O(1)

def g(number):

L = [] O(1)

for num in range(number): O(n)

if num in L: O(n)

L.append(num) O(1)

return L O(1)

O(n) * O(1) = O(n)
for the loop

O(n) * O(n) * O(1) = O(n^2) for
the loop

Big-O Example
def addSomeNums(L):

length = len(L)

index = 1

sum = 0

while index < length:

sum += L[index]

index *= 2

return sum

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1

sum = 0

while index < length:

sum += L[index]

index *= 2

return sum

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1 O(1)

sum = 0

while index < length:

sum += L[index]

index *= 2

return sum

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1 O(1)

sum = 0 O(1)

while index < length:

sum += L[index]

index *= 2

return sum

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1 O(1)

sum = 0 O(1)

while index < length: O(1) to check index < length, O(logn) iterations of the loop

sum += L[index]

index *= 2

return sum

*note that index is multiplied by 2
every time, so the loop can run a
maximum of log n times. we
simplify this in big-O terms to logn

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1 O(1)

sum = 0 O(1)

while index < length: O(1) to check index < length, O(logn) iterations of the loop

sum += L[index] O(1)

index *= 2

return sum

*note that index is multiplied by 2
every time, so the loop can run a
maximum of log n times. we
simplify this in big-O terms to logn

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1 O(1)

sum = 0 O(1)

while index < length: O(1) to check index < length, O(logn) iterations of the loop

sum += L[index] O(1)

index *= 2 O(1)

return sum

*note that index is multiplied by 2
every time, so the loop can run a
maximum of log n times. we
simplify this in big-O terms to logn

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1 O(1)

sum = 0 O(1)

while index < length: O(1) to check index < length, O(logn) iterations of the loop

sum += L[index] O(1)

index *= 2 O(1)

return sum O(1)

*note that index is multiplied by 2
every time, so the loop can run a
maximum of log n times. we
simplify this in big-O terms to logn

Big-O Example
def addSomeNums(L):

length = len(L) O(1)

index = 1 O(1)

sum = 0 O(1)

while index < length: O(1) to check index < length, O(logn) iterations of the loop

sum += L[index] O(1)

index *= 2 O(1)

return sum O(1)

*note that index is multiplied by 2
every time, so the loop can run a
maximum of log n times. we
simplify this in big-O terms to logn

O(logn) overall

Big-O Example

def factorial(x):

if x == 1:

return 1

else:

return x * factorial(x - 1)

Big-O Example

def factorial(x):

if x == 1: O(1)

return 1

else:

return x * factorial(x - 1)

Big-O Example

def factorial(x):

if x == 1: O(1)

return 1 O(1)

else:

return x * factorial(x - 1)

Big-O Example

def factorial(n):

if n == 1: O(1)

return 1 O(1)

else: O(1)

return n * factorial(n - 1)

Big-O Example

def factorial(n):

if n == 1: O(1)

return 1 O(1)

else: O(1)

return n * factorial(n - 1) O(n)
after factorial is called for the first time, it
will recursively be called n - 1 times, which
is O(n)

Big-O Example

def factorial(n):

if n == 1: O(1)

return 1 O(1)

else: O(1)

return n * factorial(n - 1) O(n)
after factorial is called for the first time, it
will recursively be called n - 1 times, which
is O(n)

O(n) overall

Tractability

Tractability

● A problem is tractable if it has a reasonable efficient (polynomial) runtime.
Otherwise, it is intractable.

● Polynomial runtimes:
○ O(1)
○ O(n)
○ O(logn)
○ O(nlogn)
○ O(n^2)
○ O(n^100)

● Non polynomial runtimes:
○ O(2^n)
○ O(n!)

P and NP

● P: the set of problems that can be solved in polynomial time
○ Examples

■ Linear search, binary search
■ Sorting a list

● NP: the set of problems that can be verified in polynomial time
○ Given the answer to the problem, we can verify in polynomial time that it is correct
○ Examples

■ Subset sum
■ Satisfying a circuit
■ All problems in P!

Search Algorithms

Linear Search

● Checks all values of input
● Best Case

○ Target is first element in list
● Worst Case

○ Target is last element of list or
not in list

● What's the Big O?

def linearSearch(lst, target):
for i in range(len(lst)):

if lst[i] == target:
return True

return False

def recursiveLinearSearch(lst, target):
if lst == []:

return False
elif lst[0] == target:

return True
else:

return recursiveLinearSearch(lst[1:],
target)

Binary Search

● Input list has to be sorted
● We start by checking the middle

element

● What's the Big O?

def binarySearch(lst, target):
if lst == []:

return False
else:
midIndex = len(lst) // 2
if lst[midIndex] == target:

return True
elif target < lst[midIndex]:

return binarySearch(lst[:midIndex],
target)
else: # lst[midIndex] < target

return binarySearch(lst[midIndex+1:],
target)

2 5 6 16 21 24

16 24

8

21

16

Good luck on the
final exam! :)

