
Programming Problems

For each of these problems (unless otherwise specified), write the needed code directly

in the Python file in the corresponding function definition.

All programming problems may also be checked by running 'Run current script' on the

starter file, which calls the function testAll() to run test cases on all programs.

#1 - sumAnglesAsDegrees(angles) - 10pts

Can attempt after Lists and Methods lecture

When analyzing data, you need to convert the data from one format to another before

processing it. For example, you might have a dataset where angles were measured in

radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in

radians (floats) and returns the sum of those angles in degrees (an integer). To do this,

you will need to loop over the angles and change each angle from radians to degrees

before adding it to the sum. You can do this with the library function math.degrees().

Make sure to round the final result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should

convert the radians to approximately 30.0, 45.0, and 180.0, then return 255.

Note: you are not allowed to use the built-in function sum for this problem. Use a loop

instead!



#2 - Destructive and Non-Destructive Functions - 20pts

Can attempt after References and Memory lecture

First, write a non-destructive function findMultiples(lst, num) that takes a list of

integers and a positive integer and returns a new list containing only the elements of

lst that are also multiples of num.

For example, findMultiples([11, 20, 35, 43, 50, 66], 5) returns [20, 35,

50], and findMultiples([17, -77, 34, -95, 88], 11) returns [-77, 88].

Your findMultiples function must not modify the original list in any way.

Second, write a destructive function removeNonMultiples(lst, num) that does the

same thing, but destructively. This function takes a list of integers and a positive integer

and destructively removes the elements that are not multiples of num in the provided list.

In other words, at the end of the function call lst should contain only the original

elements that are multiples of num. This function should return None instead of the list;

we'll test it by checking whether the input list was modified properly.

For example, removeNonMultiples([1, 2, 3, 4, 5, 6], 3) returns None and

modifies the list to be [3, 6], and removeNonMultiples([4, 5, 70, -3, 10], 2)

returns None and modifies the list to be [4, 70, 10].

Hint: this is tricky because lst will change as the function runs. You should use an

appropriate loop to account for this - see the 'Destructive Looping' portion of the course

slides!



#3 - recursiveStringToList(lst) - 15pts

Can attempt after Recursion lecture

Write a function recursiveStringToList(s) that takes a string as input and returns a

list which contains all the characters that were in s, but as separate items in the list.

This function must use recursion in a meaningful way; a solution that uses a loop or the

built-in split function will receive no points, and the function should not call list().

For example, recursiveStringToList("hello") should return ["h", "e", "l",

"l", "o"].

Hint: start from the framework in the Recursion slides! What's your base case, and how

do you make the problem smaller? What should the function return, and how can you

combine it with the leftover part?

Another Hint: make sure to keep your types straight! The parameter should always be

a string, and the returned value should always be a list.


