
Programming Problems

For each of these problems (unless otherwise specified), write the needed code directly

in the Python file in the corresponding function definition.

All programming problems may also be checked by running 'Run current script' on the

starter file, which calls the function testAll() to run test cases on all programs.

#1 - getLeftmost(t) - 5pts

Can attempt after Trees lecture

Write the function getLeftmost(t) that takes a binary tree in our dictionary format and

returns the contents of the leftmost child of that tree. This is the child we reach if we

keep moving down and left from the root node until we cannot go left any further. For

example, in the tree:

Which is represented as the dictionary:

t = { "contents" : "A",

"left" : { "contents" : "B",

"left" : { "contents" : "D", "left" : None, "right" : None},

"right" : None },

"right" : { "contents" : "C",

"left" : { "contents" : "E",

"left" : { "contents" : "G", "left" : None, "right" : None },

"right" : { "contents" : "H", "left" : None, "right" : None } },

"right" : { "contents" : "F", "left" : None, "right" : None } } }

We go from A to B, then from B to D, then we can't go left any further. "D" is the content

of the leftmost node and is returned when we call the function on t.

Hint: you can solve this using recursion, or you can just use a while loop.

#2 - getInitialTeams(bracket) - 10pts

Can attempt after Trees lecture

We can represent a tournament bracket from a sports competition as a binary tree. To

do this, store the winning team as the root node. Its children are the winning team

again, as well as the second-place team. In general, every node represents the winner

of a match, and its two children are the two teams that competed in that match.

For example, the following bracket represents the last two rounds of the Women's World

Cup in 2019.

In our binary tree dictionary format, this would look like:

t1 = { "contents" : "United States",

"left" : { "contents" : "United States",

"left" : { "contents" : "England", "left" : None, "right" : None },

"right" : { "contents" : "United States", "left" : None, "right" : None}},

"right" : { "contents" : "Netherlands",

"left" : { "contents" : "Netherlands", "left" : None, "right" : None },

"right" : { "contents" : "Sweden", "left" : None, "right" : None } } }

Write the function getInitialTeams(bracket) which takes a tournament bracket and

returns a list of all the teams that participated in that tournament. For example, if the

function is called on the tree above it might return ["England", "United States",

"Netherlands", "Sweden"]. You will need to implement this function recursively to

access all the nodes. We recommend that you start by looking at the sumNodes and

listValues examples from the slides.

Hint 1: how can we get all of the teams to show up in the list exactly once? Every team

occurs at the very beginning of the tournament, in the first set of matches. In the tree,

this is represented by the leaves, so you should not include values on non-leaf nodes.

Hint 2: make sure the type you return is the same in both base and recursive cases!

#3 - largestEdge(g) - 10pts

Can attempt after Graphs lecture

We often want to find the largest edge weight in a graph. This can help us identify

useful information, like the most congested street in a city or the two gas stops that are

farthest apart on a highway. Write the function largestEdge(g) that takes a weighted

graph in our dictionary format and returns a list holding two elements - the two

endpoints of the edge with the largest weight in the graph. For example, in the graph:

Which is represented as the dictionary:

g = { "A" : [["B", 10], ["C", 2], ["F", 25]],

"B" : [["A", 10], ["D", 42]],

"C" : [["A", 2], ["E", 30]],

"D" : [["B", 42]],

"E" : [["C", 30], ["F", 9]],

"F" : [["A", 25], ["E", 9]],

"G" : [] }

The largest edge has the weight 42. That edge is between the nodes B and D, so if we

call the function on that graph, it will return ["B", "D"] (or ["D", "B"] - the order

doesn't matter).

To find the largest edge, modify the find-most-common/find-largest-item pattern we've

discussed several times in class. Iterate over each of the nodes in the graph, then for

each node iterate over each of that node's neighbors to visit each edge.

Note: to make this easier, you are guaranteed that all edge weights will be positive and

there will be at least one edge in the graph.

#4 - getPrereqs(g, course) - 5pts

Can attempt after Graphs lecture

College course prerequisites are notoriously complicated. However, we can make them

a little easier to understand by representing the course dependency system as a

directed graph, where the nodes are courses and an edge leads from course A to

course B if A is a prerequisite of B. For example, the core Computer Science courses

(almost) produce the following prereq graph:

Which would be represented in code as:

g = { "110" : [],

"112" : ["122", "150"],

"122" : ["213", "210", "251", "281"],

"151" : ["150", "251", "281"],

"150" : ["210", "251"],

"213" : [],

"210" : [],

"251" : [],

"281" : [] }

Write the function getPrereqs(g, course) that takes a directed graph (in our

adjacency list dictionary format, without weights) and a string (a course name) and

returns a list of all the immediate prerequisites of the given course. If we called

getPrereqs on our graph above and "210", for example, the function should return

["122", "150"].

Hint: you can't just return the neighbors of the course, because the edges are going in

the opposite direction! Instead, iterate over all the nodes to find those that have the

course as a neighbor. Construct a new list out of these nodes as the result.

