Programming Problems

For each of these problems (unless otherwise specified), write the needed code directly
in the Python file in the corresponding function definition.

All programming problems may also be checked by running 'Run current script' on the
starter file, which calls the function testAll() to run test cases on all programs.

In this assignment, you will write six functions and these functions will work together to
create an interactive, text-based game of Memory. In the game Memory you start with a
deck of matched cards. Place the cards face-down on the table. In each turn you get to
flip over two face-down cards. If they match, they stay face-up; if they don't, you have to
flip them face-down again. The goal is to flip all the cards face-up in as few turns as
possible.

If you've never played Memory before, try it out here:
https://www.helpfulgames.com/subjects/brain-training/memory.html

Note: #1-#4 can be solved with just the skills you've learned in prior units; we
encourage you to write these early. #5-#6 will be covered in the Managing Large Code
Projects lecture.

https://www.helpfulgames.com/subjects/brain-training/memory.html

#1 - generateBoard(words) - 5pts

First, we need to set up the initial board of cards. Each card is represented by a
two-item list: the first item is the card's value (a string), the second is a Boolean
representing whether the card is face-down or face-up (False for down, True for up).

Write the function generateBoard(words) which takes a list of strings and returns a 2D
list board (a list holding cards, which are 1D lists). The function should create two cards
for each of the words in the list, both with initial flipped values of False (since we want
all the cards in our game to begin face-down).

Once all cards have been added to the board, shuffle the board so the cards are in a
random order. Recall that there's a built-in destructive function that can do this -
random.shuffle.

For example, if we call generateBoard(["dog", "cat"]), it mightreturn [["dog",
False], ["cat", False], ["cat", False], ["dog", False]], though the inner
lists could also be in a different random order.

Important Note: make sure that when you're generating the second card of a pair, it is
not aliased to the first card! That can lead to problems later on.

#2 - displayBoard(board) - 5pts

Next, we need to be able to display the board to the user. We'll display each card as its
index followed by its value if it is face-up, or the string "???" if it is face-down.

Write the function displayBoard(board) which takes a board (a 2D list containing
cards as described above in generateBoard) and prints the board, returning None.
Each card on the board will be printed on a separate line. The line should contain the
index of the card and the card's value (or ??? if it is face-down). You can format the
printed line however you like as long as those two pieces of information are included
and each card is printed on a separate line.

For example, if we call displayBoard([["dog", False], ["cat", True],
["cat", False], ["dog", True] 1]), (the list above, but with the first "cat" and
second "dog" face-up), it might print:

0: ???
1: cat
2: ???
3: dog

#3 - getFlippedCards(board) - 5pts

We'll need to determine which cards on the board have been flipped to tell when the
game is over. Write the function getFlippedCards(board) which takes the board (a
2D list containing cards as described above) and returns a 1D list of integers. This
function should go through each card on the board and if the card is face-up add the
index this card has in the board into a result list. The result list of indexes should be
returned at the end.

For example, if we call getFlippedCards([["dog", False], ["cat", True],
["cat", False], ["dog", True]])itwillreturn[1, 3], because the first and
third elements are face-up. If no cards are face-up, just return an empty list.

#4 - pickIndex(board) - 5pts

To make the game interactive we'll let the user choose which cards to flip over on each
turn by typing in the indexes of the cards they want to flip into the interpreter. Write the
function pickIndex(board) which takes a board (a 2D list containing cards as
described above) and returns the index of the card to be flipped (an int).

The function should ask the user to pick a card index. If this index is not an integer, not
in the range of the board, or is the index of a card that has already been flipped, the
function should print out an appropriate error message and ask the user for an index
again. When the user enters a valid index, that index should be returned as an integer.

For example, if we call pickIndex([["owl", False], ["dog", True], ["cat",
False], ["cat", False], ["owl", False], ["dog", True]]) we mightend up
with the following interaction. User input is bolded.

Pick a card index: test

That's not an integer!

Pick a card index: 6

Out of range. Pick a valid card.

Pick a card index: 1

You've already flipped that card. Pick a different card.
Pick a card index: 2

The function would then return the integer 2. Your prompts and error messages don't
have to be the same as ours, but they should exist and provide relevant information.

We will manually grade this problem. To test it yourself, run testPickIndex() and try
entering non-numbers, numbers out of range, and indexes that have already been
flipped, as shown above.

Hint: use the board to help determine what is in range and whether the chosen index
has already been flipped. You can use s.isdigit() to check if a string holds a digit.
Hint 2: if you're stuck, look at our tic-tac-toe example from the Managing Large Code
Projects lecture. How did we implement taking turns?

#5 - loadWords(filename) - 10pts

Instead of providing the words for the game in a list, we'll provide the words for the
game in a file. That file will include all the words that should be used in the game,
separated by commas. For example, a file containing the text

owl,dog,cat

would be used to create a game with a six-item board - two owl cards, two dog cards,
and two cat cards.

Write the function 1loadWords (filename) which takes the name of a file (a string),
reads the text from that file, and returns a list of the words that occurred in that file. For
example, if the file memory2.txt contains the text shown above,
loadWords("memory2.txt") would return the list ["owl", "dog", "cat"].

Important Note: to test this function, you'll need to download the files memory1.txt,
memory2.txt, and memory3.txt from the course website and place them in the same
folder as hw5.py. But you don't need to include the files in your submission; we'll have
them in the correct place in Gradescope already.

Another note: if your code is fine but Python can't find the files, and you're sure the
files are in the right place, come to office hours! We can help you get your file system
set up correctly (which will be important, as many of the Hw6 projects include file
reading).

#6 - playMemoryGame (filename) - 10pts

Now we finally have everything we need to actually implement the game! You must use
the five functions written above as helper functions to streamline the game code.

Write the function playMemoryGame (filename) which takes the name of a file that

holds the words to be used in the game. The function should read the words into a list,
set up a memory game based on those words, then run the game with the user until all
cards have been flipped. Here's a high-level algorithm for how playMemoryGame works:

[continued on next page]

[continued from previous page]

A.

First, generate a new board by reading the words from the given file and creating
a starter board based on them. Call 1loadWords and generateBoard for this.

Second, welcome the player to the game and show the starting board to the user.
You'll want to call displayBoard for this.

. Third, set up a loop that continues until the game is finished. The game is done

when every card in the board has been flipped. To check for this, test whether the
result of calling getFlippedCards on the board contains all the cards or not.

Fourth, in each iteration of the loop, have the user pick indexes for two cards that
they want to flip face-up. After a valid index is picked, the card at that index on
the board should have its flipped value set to True and the board should be
displayed again. You'll need to do this twice - once for the first card and again for
the second. You'll want to call pickIndex and displayBoard here (and note that
you'll need to call them more than once!).

Fifth, check whether the two cards that were flipped match by comparing their
values. If they match, leave them face-up (don't change anything); if they don't
match, set both flipped values to face-down (False) again. In either case, print
out an appropriate message to the user, then print some kind of line break to
show that the next turn has begun.

Finally, keep track of the number of turns the user takes to clear the board. A turn
is a single iteration of the loop (flipping two cards and seeing if they're a match).
You should print out a congratulations message that includes the number of
moves taken at the end of the game.

Once this function is finished, you're done! Play your game to test out how it works. For
example, say we call playMemoryGame ("memoryl.txt"), where the file memoryl. txt
contains the text "dog, cat". The text on the next page shows what a full game might
look like, with user inputs bolded. Your game prompts don't need to be identical to ours,
but they should convey the same information.

[continued on next page]

[continued from previous page]

Welcome to Memory!

Q: °??

1: ???

2: ???

3: 2?2

Pick a card index: @
0: dog

1: ???

2: ???

3: 2?2

Pick a card index: 2
0: dog

1: ???

2: cat

3: ???

Try again!

Pick a card index: 1

0: ???
1: cat
2: ???
3: ???
Pick a
0: ???
1: cat
2: cat
3: ???

card index: 2

Good guess!

Pick a card index: ©

0:
1:
2:
3:
Pic

dog
cat
cat
?P?
k a

You've

Pic
Q:
1:
2:
3:

k a
dog
cat
cat
dog

card index: 2
already flipped that card. Pick a different card.
card index: 3

Good guess!

Good game! You took 3 moves to clear the board.

