
15-110 Hw6 - Circuit Simulator

Hw6 and its checks are organized differently from the other assignments. If you haven't
already done so, you should read the Hw6 General Guide to understand how this
assignment works.

Project Description

In this project, you will build a simple circuit simulator that can take a boolean
expression in text format, generate an interactive circuit for the expression using
simulation, and create a truth table for the expression automatically. This will allow you
to explore what different boolean expressions output. Note that this project uses
recursion and trees - you should be comfortable with those topics before attempting it!

In the first week, you will write code that can parse a boolean expression into a circuit
tree. In the second week, you will evaluate that circuit tree on different inputs and
generate truth tables. In the third week, you will visualize that circuit tree using
simulation, and allow the user to interact with the circuit by clicking on the inputs.

Click on the following links to read the instructions for each week's assignment:
Check6-1 - due Monday 11/20 at noon EST
Check6-2 - due Friday 12/01 at noon EST
Hw6 - due Friday 12/08 at noon EST

Check6-1 - due Monday 11/20 at noon EST

In the first stage, you will write code that can convert a boolean expression as a string
into a circuit tree, as described below. You will also validate that the produced circuit
trees are valid circuits. This conversion will make it possible to make truth tables and
simulated circuits in the following stages of the project.

A circuit tree is like a parse tree- it's a way of representing a circuit based on operation
order. For example, in the expression (X OR Y), OR is the root node of the tree, and it
has two children- leaf node X and leaf node Y. By representing expressions as trees, we
can evaluate complex nested expressions, like ((X OR Y) AND (Y XOR (NOT Z))),
which parses to the tree shown below.

Step 0:Written Assignment [45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: Find Matching Parentheses [10pts]

First, we need to write two helper functions that will be used by our primary parsing
function. These functions will identify parts of a boolean expression by A) recognizing
which part of the text is part of a pair of parentheses, and B) finding the starting and
ending indexes of tokens (like variables and operators) in the text.

First, let's write the helper function for Task A. Implement the function
findMatchingParen(expr, index) in the starter file, which takes a boolean
expression string and a starting index. The function returns the index of the parenthesis
that is paired with the parenthesis at the starting index.

For example, the expression ((X OR Y) AND (Y XOR (NOT Z))) has its parentheses
color-coded to demonstrate where the pairs are. If we call the function on this
expression with the index 1 (the orange starting paren), it should return 8 (the orange
ending paren's index).

To solve this problem, keep track of how many open and closed parentheses have been
seen so far as you iterate over the string. When these counts are equal, you have found
the closing paren; return the index you're on.

To test this function, run testFindMatchingParen().

Note: to keep the starter file from becoming too crowded, all the tests have been moved
to the file hw6_circuit_tests.py, which you can open and read while debugging. The
functions in this file are called at the bottom of hw6_circuit.py. If you change the
filename of hw6_circuit.py, you will need to change the filename imported by
hw6_circuit_tests.py in the first line of the file too.

Step 2: Find Token Bounds [10pts]

Now let's write the second helper function, which will help us identify tokens. A token in
a string is a part of the text that is interpreted together, like a word. We'll separate
tokens in this project based on spaces and parentheses.

Implement the function getTokenBounds(expr, start) which takes a boolean
expression as a string and a starting index, and identifies the bounds of the next token
that occurs at or after that starting index. You should return a two-element list where the
first element is the start index of the token, and the second element is the last index of
the token. For example, given the expression ((X OR Y) AND (Y XOR (NOT Z))), the
next token starting at index 3 would have start index 4 and end index 5; it's the token
OR. So the function would return the list [4, 5].

To solve this, keep iterating over indexes in the string (starting at the start index) until
you find something that isn't a space. Then keep iterating until you find something that
IS a space. That gives you your start and end indexes. Note that the end index should
be inclusive; in the example above, 5 is the index of 'R', not the space after the 'R'.

To test this function, run testGetTokenBounds().

Step 3: Parse Boolean Expressions [15pts]

Now we have everything that we need to parse a boolean expression into a tree. Some
boolean operations (like not) don't have a sense of a "left" or "right" child, so we'll
use a general tree format instead of a binary tree format. This format will still represent
a tree as a dictionary, but will only have two keys - "contents", which maps to the
value, and "children", which maps to a list of the children (which are also trees). A
node with no children (in other words, a leaf) would map children to an empty list.

Implement the function parseExpr(expr) in the starter file, which takes a string and
returns a tree (as a dictionary).

First, run .strip() on the expression to remove any extra whitespace. Then,
recursively parse the expression. To do this, we'll need to consider a few cases.

● If the string begins with a left parenthesis, call findMatchingParen. If the index
of the paired parenthesis is the end of the string, there are paired parens
wrapping the whole expression. Recursively call parseExpr on everything but
the first and last characters, and return the result.

● If there are no spaces in the string, this is a single token, a variable. Return a
leaf, where the value is the token name and children is an empty list.

● If the expression begins with "NOT", this is a not operation. Recursively call the
function on all but the first three characters of the string to get the value of the
expression. Then return a tree with the value "NOT" and a children list with one
node, the recursive result.

● Otherwise, this is a two-element operation. We need to find the left value, the
operator, and the right value.

○ To get the left value, you have to determine whether this value is an
expression within parentheses, or a single token. We'll assume that there
are no ambiguous expressions (like X AND Y OR Z).

■ If the first token of the expression is an open paren, call
findMatchingParen to find the index of the closing paren. This
gives you the start and end indexes of the entire left side.

■ Otherwise, assume it's a variable. Call getTokenBounds to get the
start and end indexes of the entire left side.

○ Once we have the left side, we can call getTokenBounds starting from the
space after the left side to get the bounds of the operator.

○ Then the right side is the rest of the string.

● Recursively call the function on the left side and right side to get the two child
trees. Then return a tree with the operator as the value, and a children list with
two nodes, which are the two sides returned before.

To test this function, run testParseExpr().

Step 4: Validate the Circuit Tree [10pts]

Now that we can generate trees from strings, we need to ensure that every circuit we
make is valid. The circuits we test should only have four types of operators - NOT, AND,
OR, and XOR gates.

Implement the function validateTree(t) in the starter file. This takes a tree
(generated by parseExpr) and returns True if that tree is valid, or False otherwise.

In general, to validate a circuit tree, you first check that it's a valid node (ie, does it have
"contents" and "children" keys). Then check whether all of the tree's children are
valid. If they are, verify that the number of children matches the value. AND, OR, and XOR

gates should have two children; NOT gates should have one child; and anything else
should have zero children (as anything else is a variable).

To test this function, run testValidateTree().

Step 5: Put it All Together [10pts]

Now we just need to put everything together, and we have a working Stage 1 program!
Implement the function runWeek1() from the starter file. This function should ask the
user to input a boolean expression (using the input() command), parse the expression
into a tree, and check if the tree is valid. If it is, the program should print out the tree; if it
is not, the program should report that the tree is invalid.

To test your program, run runWeek1() and try giving it a few different boolean
expressions. Make sure to include at least one valid expression and at least one invalid
(but parseable) expression. (Your program does not need to be able to handle trees that
are not parseable).

Check6-2 - due Friday 12/01 at noon EST

In the second stage, you will write code to evaluate your circuit tree on any possible
input, and use this code to generate a truth table in text format. This code will also help
support the circuit simulation in Stage 3.

Before you start this second stage, go to the bottom of the starter file and uncomment
the four test lines associated with Week 2.

Step 0:Written Assignment [45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: Make Leaf List [10pts]

First, we need to determine what the inputs of the circuit are. We can do this by making
a list of all the leaves in the tree. When we remove the duplicate leaves, this gives us all
the possible inputs!

Implement the function getLeaves(t) from the starter file. This takes a circuit tree and
returns a sorted list of all the leaf values of that tree, with no repeats. You will need to
implement this function recursively (as it parses a tree).

In the base case, the result is simple- a tree with no children is a leaf, so you can return
a list holding that leaf's value.

In the recursive case, call the function recursively on each child of the tree. For each
leaf in the resulting lists, add it to a result list only if it has not already been added.

To test this function, run testGetLeaves().

Step 2: Generate All Input Combinations [10pts]

Next, we need to generate every possible combination of inputs that could be used to
evaluate the boolean expression. Each input combination will be a list of n False and
True values, where n is the number of inputs in the circuit.

We'll solve this problem recursively. If we can generate all possible input combinations
for n-1 inputs, we can solve the problem for n inputs by making two versions of each
input from the preliminary result- one version that adds a False value to the end, and
one version that adds a True value to the end.

Implement the function generateAllInputs(n) in the starter file, which takes an
integer n and returns a list of all possible input lists that have n elements. You should
use the following algorithm:

● In the base case (when n is 0), return a 2D list with one element - an empty list.
● Otherwise…

○ Recursively generate all possible input combinations for n-1 elements.
○ Make a new result list
○ For each input list in the n-1 result:

■ Add that input list plus a False element to the new result list
■ Add that input list plus a True element to the new result list

○ Return the new result list

To test this function, run testGenerateAllInputs().

Step 3: Evaluate Circuit [15pts]

Next, implement the function evalTree(t, inputs) in the starter file, which takes a
tree and a dictionary, and returns a boolean value. This function will evaluate a circuit
tree based on a dictionary that maps input variables to booleans (False or True).

We will do this by recursively evaluating each of the children of the circuit tree, then
applying the appropriate boolean operator to the child results. If the input tree is a leaf
(a variable), look it up in the input dictionary to find its value.

To test this function, run testEvalTree().

Step 4: Make Truth Table [15pts]

Now we can finally generate an actual truth table! In this step, you will use the functions
you have written so far to write out each line of a truth table, by determining the inputs
of a tree and testing each possible mapping of False and True to the inputs.

Implement the function makeTruthTable(tree) in the starter file. This takes a tree
(generated by parseExpr) and prints out a truth table showing all the possible inputs to
the tree, and the resulting outputs. You may personalize this truth table however you
wish, as long as it shows every input combination and every possible output.

To write this function, start by using getLeaves() to get the inputs and
generateAllInputs() to get the rows of the truth table. For each row, create an input
dictionary that maps each input variable name to its value (False or True). Then run
evalTree on the tree and the input dictionary, and display the result.

To test this function, run testMakeTruthTable() and check the table that is displayed.
Here is the table we generated; yours may look different than ours, as long as the same
general information is displayed. Note that we replaced False/True with 0/1 to make
the table more readable.

X | Y | Z | Out
0 | 0 | 0 | 0
0 | 0 | 1 | 0
0 | 1 | 0 | 1
0 | 1 | 1 | 1
1 | 0 | 0 | 1
1 | 0 | 1 | 1
1 | 1 | 0 | 1
1 | 1 | 1 | 1

Step 5: Update Run Function [5pts]

For the last step, implement the runWeek2() function in the starter file. Start by copying
your code from runWeek1() from the first check-in. When the tree is valid, instead of
printing the tree dictionary, call makeTruthTable on the tree. Now you can generate
truth tables for any circuit you want!

Hw6 - due Friday 12/08 at noon EST

In the final stage of the project, you will use your circuit-solving code to program a
circuit-solving simulator. You will do this using Tkinter and the class's simulation
framework.

Before you start this last stage, go to the bottom of the starter file and uncomment the
three test lines associated with Week 3.

In the simulation, the user will type the boolean expression into the window; when they
press Enter, the circuit will be drawn on the screen (with all inputs starting in the Off
position). If the user clicks on an input to the circuit, it should turn On. At all times, any
nodes and wires in the circuit that are on (or powered) should be drawn as yellow. And
finally, if the user presses the Tab button, it should produce a truth table for the circuit in
the interpreter.

In order to track which parts of the circuit are powered, we will add one variable to each
node in the circuit tree- "powered", which maps to False if the node evaluates to
False, or True otherwise.

Step 0-A: Complete Check6-1 [20pts]

If you got a perfect score on Check6-1 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-1 and use it to update
your Check6-1 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working.

Step 0-B: Complete Check6-2 [20pts]

If you got a perfect score on Check6-2 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-2 and use it to update
your Check6-2 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working.

Step 1: Review Provided Code [0pts]

Drawing a circuit such that it fits nicely in the window is fairly complicated, so we've
provided some code for you to handle the finicky bits. You will write some functions that
call the functions we've provided, and you will also write some functions that are called
by our provided functions.

You don't need to understand how each of the following functions work, but knowing
what they do will be helpful!

● getTreeDepth: returns the depth of the tree, the max length from root to leaf
● getTreeWidth: returns the width of the tree, the max number of nodes on the

same level
● drawInputs: draws all the inputs of the circuit. They should all go on the left side

of the screen.
● drawTree: draws a circuit tree within the specified bounding box. It returns the

location where the node was drawn, to make drawing wires easier.
● drawCircuit: draws the entire circuit. It first determines the size of each circuit

node by measuring the width/height of the tree. Then it draws the inputs and
outputs. Then it recursively draws the circuit tree.

Step 2: Type Boolean Expression in Simulation [20pts]

First, we need to update the simulation code to let the user type an expression into the
window, then parse that expression into a tree.

To do this, we will need to update three simulation functions: makeModel, keyPressed,
and makeView. We will also need to implement one additional function,
runInitialCircuit.

In makeModel(data), we need to store three pieces of information in data: the string
expression that the user is typing, the tree that is generated, and an input dictionary.
Store these in data["expression"], data["tree"], and data["inputs"]. These
should all begin as default values- expression should be an empty string, tree should be
None, and inputs should be an empty list.

In keyPressed(data, event), we need to accept user input from the keyboard. For
most keys the user types, we simply want to add the typed key to the end of the
expression in data. However, there are two exceptions:

● If the user presses the backspace key and there is at least one character in the
expression, we should delete the last character. The keysym name for this
character is "BackSpace".

● If the user presses the Enter key, we should parse their expression into a tree
(using parseExpr) and store the result in data["tree"]. Recall that the keysym
name for this character is "Return".

In makeView(data, canvas), we should draw the current expression at the bottom of
the screen. Draw the text "Expression: " followed by the text in
data["expression"] in the bottom-left corner of the window. You should use
canvas.create_text to do this. Using an anchor will help place the text correctly!

Finally, in runInitialCircuit(data), set up the input dictionary for the circuit (which
is needed to draw the circuit). You can do this by generating an input list with
getLeaves, then making a dictionary that maps each leaf to the value False, just like in
makeTruthTable. Set data["inputs"] to that dictionary. Once the function is working,
call it in keyPressed in the Return condition, after you set data["tree"].

To test this step, run the simulation and try typing an expression. You should see the
expression appear in the bottom-left corner of the window.

Now, just for the fun of it, let's add in a cheat code to let the user generate truth tables
for the circuits they create. Again in keyPressed, detect if the user has clicked Tab
(which has the keysym name "Tab"). If they did, run makeTruthTable on
data["tree"] to print out the truth table.

Step 3: Draw the Circuit [20pts]

Next, we want to draw the circuit parsed from the expression. Most of this is provided in
the starter code, but you will implement two new functions for it: drawNode and
drawWire.

Implement the function drawNode(canvas, value, x, y, size, lit) in the starter
file. canvas is the Tkinter canvas; value is the name that should be written in the node
(like X or AND). x and y are the center coordinate of the node, and size is its size. If lit
is True, the node is powered (and should be filled with yellow); otherwise, the node is
off (and should be clear, or filled with None). Draw a square centered at (x, y) with size

size, then draw the value variable as text in the center of the square.

Now update makeView(data, canvas) so that if data["tree"] is not None, the
function calls drawCircuit(data) (a function that is provided in the starter file). This
function calls your drawNode function.

If you run the simulation now and enter a valid boolean expression, you should see the
nodes of the expression appear! Now we just need to add the connections, or wires.

Implement the function drawWire(canvas, x1, y1, x2, y2, lit) in the starter file.
canvas is the Tkinter canvas; (x1, y1) and (x2, y2) are the two endpoints of the
wire. If lit is True, the wire is powered (and colored yellow); otherwise, the wire is off
(and should be black). Draw a line between (x1, y1) and (x2, y2).

Now when you run your simulation and parse a valid tree, you should see the whole
circuit!

Note: when you click Tab to run makeTruthTable, it will change the colors of the nodes
of the tree. This happens because makeTruthTable calls evalTree, which changes the
powered states of the nodes. This is okay and you will not be penalized for it; in fact,
you will be able to undo it by clicking on the inputs in the next step.

Step 4: Make the Circuit Interactive [20pts]

Now we've reached the final step: making the circuit interactive. We want to change the
code so that users can click on the inputs to switch them On/Off and see how the whole
circuit changes as a result.

As was mentioned above, we'll need to keep track of which parts of the circuit are
powered, and which aren't. Update your function evalTree to make one change: before
you return the result of the evaluation, set t["powered"] equal to that result. This will
add a key to every level of the dictionary, and will store all the temporary results.

Now, in runInitialCircuit, add a call to the end of the function that sets
data["output"] equal to the result of calling evalTree on data["tree"] and
data["inputs"]. This will set the initial "powered" values for every level of the tree,
and will also store the overall output (which is used in drawCircuit()).

This finally leads us to the interesting part: clicking on inputs. You'll want to implement
this in mousePressed(data, event). To detect whether the user has clicked on an
input, you need to determine if the click location is within the bounds of the input box.
The drawInputs() function creates a dictionary data["inputLocations"] which
maps each input variable to a dictionary. That inner dictionary has four keys- "left",
"right", "top", and "bottom". These are the bounds of the input's box.

For each input in the input dictionary, check whether the click location in event is within
the bounds of that input's box. This is true if event.x is between the left and right
bounds, and if event.y is between the top and bottom bounds. If this is true, set
data["inputs"] of that input to the opposite of itself (to flip the switch)

Once you've gone through all the inputs, set data["output"] to evalTree of
data["tree"] and data["inputs"] again, to update the results.

Now when you run your simulation, you should be able to click on different inputs and
see the whole circuit light up in response. You can watch the following video for an
example of a working circuit at the end of Hw6:
https://www.cs.cmu.edu/~110/hw/hw6_circuit_final_demo.mp4

With that, you're done! Try entering lots of different circuits into your simulator, and
experiment with how they work.

https://www.cs.cmu.edu/~110/hw/hw6_circuit_final_demo.mp4

