
Exam 2 Review
15-110 – Monday 11/06
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Announcements

• Exam2 on Wednesday in McConomy!
• Bring your paper notes (<= 5 pages), something to write with, and your 

andrewID card
• Arrive early if possible – we're checking IDs at the door

• Hw5 includes Code Review #2! Same rules as Code Review #1.
• Timeslot signups will be released tomorrow
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Review Topics

• Big-O Calculation
• Hashed Search
• Brute Force Algorithms



Big-O Calculation



Big-O Essentials: What to Count?

When measuring the Big-O complexity of an algorithm, we must specify 
what it is we're counting. Some popular choices:
• comparisons:  target == lst[i]

• assignments:   y[i+1] = x[i]

• recursive calls:  recSearch(tree["left"], target)

• all 'actions' in the program (all of the above, plus more)



Big-O Essentials: Find the Dominant Term

When calculating Big-O, we don't care about coefficients. An algorithm 
that makes 3n comparisons is considered just as fast as an algorithm 
that makes 2n comparisons: both are O(n).

Only the dominant term matters:

O(1) < O(log n) < O(n) < O(n2) < O(n3) < O(2n) < O(n!)



Big-O Essentials: Mind the Exponent

When dealing with Big-O equations, n is the size of the input and k is 
some constant number.

O(nk) is polynomial in n and considered tractable, because k is constant

O(kn) is exponential in n and considered "slow" (intractable) because n 
is variable and will grow over time



When is an algorithm O(n)?

Any algorithm that processes each element once is O(n).

• Add up the elements of a list

• Sum the numbers from 1 to n

• See if a list contains an odd number

• Find the index of the first even number



When is an algorithm O(n2)?

Doing an O(n) operation on every element of a list or string means the 
total number of operations is O(n2).

Common example: nested for loops that both do n iterations:

for i in range(len(lst)):

    for j in range(len(lst)):

        if (i != j) and (lst[i] == lst[j]):

            print(lst[i], "is duplicated")



When is an algorithm O(n2)?

An algorithm can be O(n2) even if it has just one loop!

for i in range(len(lst)):
    if lst[i] in (lst[:i] + lst[i+1:]):
        print(lst[i], "is duplicated")

The in test on a list is itself O(n) and it is inside a for loop that does n 
iterations, so the algorithm is O(n2).



When is an algorithm O(log n)?

If we cut the problem size in half each time and only consider one of the halves, we 
can make log2(n) such cuts, so the algorithm is O(log n).

For example, binary search cuts the list in half each time, so it is O(log n).

Suppose we want the first digit of a long number:

while n > 9:
    n = n // 10

This code makes log10(n) divisions, so it is also O(log n).



When is an algorithm O(2n)?

If we have a recursive algorithm operating on an input of size n and each 
call makes two recursive calls of size n-1, then the algorithm is O(2n). The 
number of calls doubles every time we increase the size by 1.

def abCombos(n, s):
    if n == 0:
        print(s)
    else:
        abCombos(n-1, s + "a") # first recursive call
        abCombos(n-1, s + "b") # second recursive call



When is an algorithm O(2n)?

If we have a recursive algorithm and each call produces a result twice 
as long as the previous result, then the algorithm is also O(2n).

def allSubsets(lst):
    if lst == [ ]:
        return [ lst ]
    else:
        result = [ ]
        subsets = allSubsets(lst[1:])
        for s in subsets:
            result.append(s)
            result.append([ lst[0] ] + s)
        return result
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Activity: Compute the Big-O

Consider the following function. What is its Big-O runtime in the worst case?

def example(s):
    result = ""
    for i in range(len(s)//2, len(s)):
        result = s[i] + result
    
    for j in range(len(s)//2):
        if s[j].isupper():
            result = result + s[j].lower()
        else:
            result = result + s[j]
    return result



Hashed Search



Big Idea

Why do we care about hash functions?

We search all the time, so we want the fastest possible search. Storing 
items in a hashtable lets us look up whether an item is in the table in 
O(1) time. You can't get faster than that!

How can we search in constant time? The algorithm needs to know 
where the value it's looking for will be stored if that value is actually in 
the table.



Hashtables

A hashtable is like a big, empty list of a designated size. Like in a list, 
each slot ('bucket') in the table is associated with an integer index, 
from 0 to len(table)-1.

When we want to put a value in the hashtable, we insert it at a specific 
index based on the result of a hash function.

0 1 2 3 4 5 6 7 8 9



Hash Functions

A hash function is a function that maps Python values to integers. 
Those integers can then be used to find an index in the hashtable to 
store the value.

We can use the built-in Python hash function or write our own. Either 
way, the hash function must follow two rules:
• The result returned when the function is called on some value must 

not change across calls
• The function should usually return different numbers when called on 

different values



Storing/Finding Values in Hashtables

Both storing a value in a hashtable and checking whether a value is in a 
hashtable follow the same procedure, which produces which index to check.
1. Run the hash function on the value to get the hashed value.
2. Mod the hashed value by the hashtable size to get the final index
Demo: Let's practice with some strings and the built-in hash function.

"wow" "a" "zoo"
"code"

0 1 2 3 4 5 6 7 8 9



Why O(1)?

Why is looking up a value in a hashtable O(1) time?

We don't need to check every bucket in the hashtable. Only look in one 
bucket- the one with the index associated with the hashed value.

Important: this only works if the value we're searching for can't change 
(it's immutable) and if the hashtable is large enough for the stored 
values to spread out. (10 buckets isn't nearly enough!)



Brute Force



Big Idea

One approach to solving a problem is to try every possible solution 
until we find one that works.

We call this a brute force approach. Often, brute force approaches are 
slow, because they have to do a lot of work.

To figure out how much work they have to do, we can count the 
number of possible solutions. In the worst case, a brute force approach 
will have to consider every possible solution.



Knapsack Problem

● We’ll practice counting solutions on a new problem:
– Given a set of items which each have a weight and a value, find a subset of them that weigh 

under a particular weight and maximize the value
– Application: You’re flying home for winter break, and your suitcase isn’t allowed to weigh 

more than 50 pounds. What are the best items to pack to stay within the limit and bring 
your most important possessions?



Knapsack Problem

● You do: How many possible solutions are there?



Counting Solutions

● When directly counting the solutions is tricky, it can be helpful to 
instead consider how the number of solutions changes when the 
problem size increases by 1

● In exam scheduling, we want to assign n classes each to one of k 
timeslots so that no student has multiple exams at the same time
– If there are m possible schedules for n classes, how many schedules are there for n+1 

classes?
– We have to try scheduling the new class at each possible timeslot for each of the m 

previous schedules
– Each existing schedule generates k new schedules – that’s kn
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