
Function Calls
15-110 – Wednesday 09/06

Announcements
 Check1 was due at noon today. If you forgot to turn it in, you can still submit up

until the revision deadline!
 We'll try to get feedback released by the next lecture
 Going forward, most assignments will be due on Mondays

 Note that Hw1 (due on Monday!) has a programming component. This will be
completed in a separate Python file.

 Tutorial: how to use and submit the programming starter file

2

Learning Objectives

• Use function calls to run pre-built algorithms on specific inputs

• Identify the argument(s) and returned value of a function call

• Use libraries to import functions in categories like math, randomness,
and graphics

3

Repeating Actions is Messy

Sometimes we want to perform the same
algorithm many times on different inputs.

For example, say we want to personalize
a young child's reading material so that it
uses their pet's name.

We could copy and paste the first bit of
code, then change the necessary parts.
But if we're sloppy this might cause
errors.

pet1 = "Spot"
pet2 = "Stella"
pet3 = "Willow"

print("See " + pet1 + ". See " + pet1 +
 " run. Run, " + pet1 + ", run!")

print("See " + pet2 + ". See " + pet2 +
 " run. Run, " + pet2 + ", run!")

print("See " + pet3 + ". See " + pet1 +
 " run. Run, " + pet3 + ", run!")

4

Functions Represent Abstract Actions

A better approach is to put the core action being repeated into a
function.

A function is a code construct that represents an algorithm. We can
define a function once, then call it many times.

We can also use functions that have already been defined by Python.

5

Function Calls

6

Call Functions with Parentheses

We've already seen how to call a function on a specific input, because
print is just a function! This is done using parentheses.

functionName(input1, input2, ...)

The number of inputs provided inside the parentheses depends on how
many inputs the function expects. Each input should be an expression.

7

A Few New Functions

To help us explore how functions work, let's introduce a few new
functions. These are built-in functions, like print; that means we can
call them in Python directly.

abs(-2) # absolute value

pow(2, 3) # raises a number to the given power

round(12.4567, 2) # rounds to the given # sig digs

8

A Special Function

There's another built-in function that works differently from the others.
input(msg) displays a message in the interpreter, lets the user type
a response in the interpreter, then stores the response as a string when
the user presses enter.

input("Enter your name: ") # whatever the user typed

This will make it possible for you to write interactive programs more
easily! This will also let the user enter data interactively.

9

Type Functions

There are a few other built-in functions that are helpful to know, as they let you change
the type of data values. This is called type-casting, and it is especially useful when you
need to change the type of user input.

int("4") # converts a value to an integer
float(3) # converts a value to a float
str(98.9) # converts a value to a string
bool(0) # converts a value to a Boolean

type(4 + 3.0) # returns the type of the eventual value
uses the names we covered before – int, float, str, bool

10

Components of Functions

The functions we call may have two core components:

Argument(s) – the values that are provided inside the parentheses, the
input

Returned Value – what the function evaluates to after running, the
output

11

Arguments Provide the Input

The specific inputs we provide to a function are called arguments. These are
like the specific bread, peanut butter, and jelly we used in the PB&J
algorithm. In the function call abs(4), the argument is 4.

Arguments are separated by commas and placed between the parentheses
of the function call. Functions can require as many (or as few) arguments as
needed.

The positions of the arguments usually have meaning. In pow(2, 3), the
first argument is the base and the second argument is the exponent. In
other words, pow(2, 3) and pow(3, 2) mean two different things.

12

Receive Output as Returned Value

When a built-in function takes its arguments and runs through its
algorithm, we cannot see what it is doing.

When the function is done, it sends back an output as a returned
value. We usually say a function returns a value. This value substitutes
in for the function call the same way a variable's value substitutes in for
the variable.

For example, the returned value of pow(2, 3) is 8.

13

Function Calls Follow Order of Operations

Function calls evaluate to a single returned value; that means they are
expressions. Therefore, we can nest function calls inside other
expressions the same way we nest basic values and operations.

round(pow(abs(-12), 1/2), 2)

Just like in math, functions follow order of operations using
parentheses. Start by evaluating the inner-most expressions,
abs(-12) and 1/2. Then evaluate the call to pow; finally, evaluate
the call to round.

14

Activity – Write Code Using Functions

You do: write a line of code in the interpreter that takes a variable x
which holds a number as a string, turns it into an integer, and then
doubles that integer.

For example, if x = "21", then your line of code should produce 42

15

Side Effects Show Change

Recall that a program has a state that holds the current information that the program
knows (what has been printed, what values do variables hold).

Function calls themselves are expressions, as they evaluate to a data value (the
returned value). But sometimes a function changes the program state in an
observable way as it is running; for example, it might display values in the interpreter,
or modify a file, or produce graphics. This is called a side effect.

If we call pow(2, 3), there is no observable side effect. However, input("How
are you?") has an observable side effect: it prints a message to the screen and
pauses the program until the user responds. input also has a returned value – the
message typed by the user. 16

Function Call Process

17

Function

Argument(s)

Returned Value

Side
effect(s)

print works differently

Let's take a moment to talk about a function that works in a particularly confusing way: print.

print takes arguments (the values between the parentheses). It produces a side effect when
it displays the result of concatenating those values to the interpreter.

What is print's returned value? It could be the displayed value, but that would let us do
weird things like:

x = print(2) + 2 # sets x = 4 # but not really!

We probably don't want that. Instead, we'll say that print has no explicit output. But it's not
that simple!

18

Missing Returned Values are None

If a function produces no explicit output, it still has a returned value – we need
something to store in a variable or display. That value is the built-in value None.

None means that there was no explicit output to be returned. Like True and
False, its meaning is built into Python, so it does not need quotes.

If you try to set a variable to the returned value of a print call, you'll find that the
variable holds None; print always returns None. Note that None does not show
up in the interpreter unless you explicitly print it; the interpreter just shows a
blank instead.

19

Activity – Identify the Function Call Parts

Consider the following two function calls. For each function call, what
are its argument(s) and returned value? Does it have any observable
side effect(s)?

round(3.1415, 1)

print("15" + "-" + "110")

21

Libraries

22

Import Adds Code from Libraries

The Python language has a ton of pre-built functions, but most aren't
included in the built-in package (the one available by default). Most of
the functions are organized into separate libraries.

To use a function from a library, you must import the library. This makes
it possible to access the functions and variables in that collection. You
can do this with the code:

import libraryName

23

Library Documentation Organizes Functions

How can you determine which functions exist in which libraries? Read
the documentation!

All the Python libraries have documentation online that describes
which functions are available and what they do. Find it by going to
docs.python.org/3/ .

There are a great many libraries and functions, so it's better to check
the documentation as needed than to try to memorize all the functions
that exist.

24

https://docs.python.org/3/

Importing the math Library

For example, we can import the math library to add more mathematical
capabilities. Note that we must put math. in front of each function or
variable name we use, to specify it came from that library.

import math
math.ceil(6.5) # ceiling of a float number
math.log(64, 2) # finds the log of 64 with base 2
math.radians(90) # converts degrees to radians
math.pi # it's π!

25

Importing the random library

Importing libraries lets us get more creative with programming. For example, the
random library lets us generate random numbers, which can help produce novel
behavior.

import random

random.randint(1, 10) # picks a random int between 1-10
inclusive

random.random() # picks a random float between 0-1

26

Importing a graphics library

Finally, to get really creative, we can produce graphics with
programming! We'll do this with the tkinter library, which makes it
possible to draw shapes on a separate screen.

import tkinter

27

Tkinter Starter Code

We need to run some code before
and after our graphics code to make
it work.

The root is the window. The
canvas is the thing on the window
where we can draw shapes.

The root.mainloop() line will
tell the window to stay open until
we press the X button.

import tkinter

root = tkinter.Tk()
canvas = tkinter.Canvas(root,
 height=400,
 width=400)
canvas.configure(bd=0,
 highlightthickness=0)
canvas.pack()

write your code here

root.mainloop()

28

Coordinates on the Canvas Grow Down-Right

The canvas created by the starter code is the thing we'll draw graphics on. It's a
two-dimensional grid of pixels. This grid has a pre-set width and height; the
number of pixels from left to right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these
coordinates are different from coordinates on mathematical graphs – the origin
starts at the top left corner of the canvas.

29

(0, 0) (width, 0)

(0, height) (width, height)

canvas

Drawing a Rectangle

To draw a rectangle, use the function canvas.create_rectangle.
This function takes four required arguments: the x and y coordinates of
the left-top corner, and the x and y coordinates of the right-bottom
corner. The rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

30

(10, 50) (110, 50)

(10, 100) (110, 100)

Keyword Arguments Add Variety

With the basic parameters, we can only draw outlines of shapes. By adding keyword
arguments, we can change the properties of these shapes.

A keyword argument is an argument that is associated with a specific name instead of a
position in the function call. We can put keyword arguments in any order we like as long
as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to include them
in every graphics call. To change that default value, include the keyword, followed by =,
followed by the new value in the function call.

canvas.create_rectangle(50, 100, 150, 200, fill="green")

31

Keyword Argument - fill

The fill argument can be used to give a rectangle a
color. It uses a string (the name of the color) to change the
color of the shape.

Note that when we draw shapes on top of each other, the
one on top is the last one called. Order matters!

32

canvas.create_rectangle(40, 40, 80, 140, fill="red")

canvas.create_rectangle(30, 80, 30 + 120, 80 + 120,
 fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue")

Graphics – Side Effects and Returned Values

When the rectangle is drawn on the canvas, we can't use it in future
computations. That's a side effect.

The graphics function call also returns something – an integer ID
associated with the drawn shape. We won't use that value in this class.

You can draw a lot more than just rectangles with Tkinter graphics!
Check out the bonus slides on graphics to find more shapes and
keyword arguments.

33

Learning Objectives

• Use function calls to run pre-built algorithms on specific inputs

• Identify the argument(s) and returned value of a function call

• Use libraries to import functions in categories like math, randomness,
and graphics

35

	Function Calls
	Announcements
	Learning Objectives
	Repeating Actions is Messy
	Functions Represent Abstract Actions
	Function Calls (2)
	Call Functions with Parentheses
	A Few New Functions
	A Special Function
	Type Functions
	Components of Functions
	Arguments Provide the Input
	Receive Output as Returned Value
	Function Calls Follow Order of Operations
	Activity – Write Code Using Functions
	Side Effects Show Change
	Function Call Process
	print works differently
	Missing Returned Values are None
	Activity – Identify the Function Call Parts
	Libraries
	Import Adds Code from Libraries
	Library Documentation Organizes Functions
	Importing the math Library
	Importing the random library
	Importing a graphics library
	Tkinter Starter Code
	Coordinates on the Canvas Grow Down-Right
	Drawing a Rectangle
	Keyword Arguments Add Variety
	Keyword Argument - fill
	Graphics – Side Effects and Returned Values
	Learning Objectives (2)

