
1

Hw1 – Awesome Fences!

Circuits and Gates
15-110 – Wednesday 09/13

3

Announcements

• Hw1 feedback released
• Make sure to view programming feedback!
• Tutorial on website

4

Quizlet

5

Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms
and abstraction

6

Computers Run on Hardware

Software: the abstracted concepts of
computation- how computers represent
data, and how programs can manipulate
data.

Hardware: the actual physical components
used to implement software, like the laptop
components shown to the right.

All the operations we perform on a
computer correspond to physical actions
within the hardware of the machine. How
does this work?

7

Bits are Electric Voltage

We previously discussed how
everything in a computer is represented
using bits (0s and 1s).

In hardware, bits are represented as
electrical voltage. A high level of
voltage is considered a 1; a low level of
voltage is considered a 0.

By redirecting electrical flow throughout
a system, we can change the values of
data in hardware.

8

Circuits Manipulate Voltage

The computer uses circuits to perform
computational actions. Circuits redirect
electricity to different parts of hardware.

Physical components of circuits (like
transistors and capacitors) are out of the
scope of this class. If you're interested, take
an Intro to Electrical Engineering class!

Instead, we will discuss how to use gates,
which are abstracted circuit components.
Every gate we discuss can be directly
translated to a real hardware circuit.

9

Logical Gates

10

Gates are Hardware's Boolean Operations

Recall that Booleans have two values (True and False), just like bits
(1/high voltage and 0/low voltage).

We can build a gate to have the same effect as a Boolean operation,
but with bits as input/output instead of True/False values.

Let's start with three familiar gates: and, or, and not.

11

Basic Gates – Actual Hardware
Our three basic gates can be represented in actual hardware

An and gate takes two inputs and
outputs 1 only if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0, 0
becomes 1)

12

Basic Gates – Shorthand
We'll use a shorthand when building circuits with these gates

An and gate takes two inputs and
outputs 1 if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0, 0
becomes 1)

A
B A B∧

A
B A B∨

A ¬ A

A B A ∧
B

1 1 1

1 0 0

0 1 0

0 0 0
A B A B∨

1 1 1

1 0 1

0 1 1

0 0 0

A ¬ A

1 0

0 1

13

Circuit Simulation

When working with gates, it can
help to simulate a circuit using the
gates to investigate how they
work.

There are lots of free online circuit
simulators. We'll use this one:
https://logic.ly/demo

https://logic.ly/demo

14

Algorithms with Gates

15

Multiple Representations of Gate Algorithms

Just like with Boolean expressions, we can combine gates together in
different orders to achieve different results. This lets us build
algorithms using gates.

When we want to represent an algorithm that uses gates, we can use
one of three different representation formats: a Boolean expression, a
circuit, or a truth table.

16

Truth Tables Show All Possibilities

So far, we've used truth tables to show all the
outcomes of a single gate or operation.

We can also use these tables to show all the
possible inputs and outputs of expressions.

For example, the truth table to the right shows
all possibilities for the following expression:
X ¬Y∨

As a Boolean expression, this would be:
X or (not Y)

X Y ¬Y X ¬Y∨

1 1 0 1

1 0 1 1

0 1 0 0

0 0 1 1

17

Three Representations

Boolean Expressions, Circuits, and Truth Tables can all be used to
represent the same algorithm. Why do we use all three?

• Boolean Expressions are good for quickly representing an algorithm in
text
• Circuits are a more visual option, and more interactive
• Truth Tables lay out all inputs and outputs, which helps derive

algorithms

18

Truth Table Clarify Complex Expressions
Truth tables are especially useful when you need to determine the output of a fairly
complex expression, like the rightmost column here. You can break down the
expression into smaller parts and give each part its own column.

A B C (A B C) (A ¬B ¬C) (¬A B ¬C) (¬A ¬B C) ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

A B C A B C∧ ∧ A ¬B ¬C∧ ∧ ¬A B ¬C∧ ∧ ¬A ¬B C∧ ∧ (A B C) (A ¬B ¬C) (¬A B ¬C) (¬A ¬B C) ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧

1 1 1 1 0 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 1

0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0

21

Truth Table to Boolean Expression to Circuit

We can use a truth table to derive a bit
expression from a set of inputs and outputs;
for example, the truth table shown on the
right matches the expression below it. This
requires deep problem solving, so it is too
complex to cover in this class.

Once we have the bit expression, we can
use it to create a corresponding circuit. Just
combine the appropriate gates in the order
specified by the parentheses.

The three representations shown to the
right all express the exact same logical
combination!

B (A C)∧ ∨

A B C ???

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

22

Circuit to Boolean Expression to Truth Table

Likewise, given a circuit, we can construct its truth
table or the equivalent bit expression.

Given the circuit shown below, we can construct a
truth table either by logically determining the result,
or by simulating all possible input combinations. We
can also find the equivalent Boolean expression by
translating gates to Boolean operators.

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

¬A (B C)∧ ∨

Conversion Chart

23S

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

¬A (B C)∧ ∨

Try all possible input
combinations

Use problem solving
and logic

Use
 problem so

lvi
ng

and lo
gic

Try
 all p

ossi
ble in

put

co
mbinations

Convert gates to

Boolean operators

Convert Boolean

operators to gates

24

Activity: Find the positive inputs!

Convert the following circuit to
the equivalent Boolean
Expression, then write the
equivalent truth table.

Which input combinations will
result in the circuit outputting 1
(the light bulb lighting up)?

and or not

25

A Few More Gates
Let's add a few more gates to simplify our circuits.

A nand gate is ¬ (A B)∧

A nor gate is ¬ (A B)∨

An xor gate is 1 if exactly one of A and
B are 1 (and the other is 0). It is the
same as (A ¬B) (¬A B).∧ ∨ ∧

A
B ¬ (A B)∧

A
B ¬ (A B)∨

A B⊕

A B ¬ (A B)∧

1 1 0

1 0 1

0 1 1

0 0 1

A B ¬ (A B)∨

1 1 0

1 0 0

0 1 0

0 0 1

A B A B⊕

1 1 0

1 0 1

0 1 1

0 0 0

A
B

26

Abstraction with Gates

27

Writing Real Algorithms with Circuits

Now that we know the basics of interacting with gates and circuits, we
can start building circuits that do real things.

We'll focus on a basic action that computers do all the time:
integer addition.

28

Addition with Gates

Let's say that we want to build a circuit
that takes two numbers (represented in
binary), adds them together, and
outputs the result. How do we do this?

First, simplify. Let's solve a subproblem.
How do we add two one-bit numbers, X
and Y? What are all the possible inputs
and outputs?

Note that 1 + 1 = 10 because we're
working in binary

X Y X + Y

1 1 10

1 0 01

0 1 01

0 0 00

29

Addition with Gates – Half-Adder

Because we need two digits to hold the
result, we need two result values: Sum
(the 1s digit) and Carry (the 2s digit).

How can we compute Sum and Carry
logically? Examine the truth table: Sum
is just an Xor function, and Carry is just
an And function!

We can make a circuit to do one-bit
addition, as is shown on the right. This
is called a Half-Adder.

X Y X + Y Carry Sum X ∧
Y

X Y⊕

1 1 10 1 0 1 0

1 0 01 0 1 0 1

0 1 01 0 1 0 1

0 0 00 0 0 0 0

30

Addition with Gates Over Multiple Digits

Now expand the circuit to handle numbers
with multiple bits (e.g. 4-bit numbers). What
needs to change?

When adding two numbers, we might need to
carry an output over to the next column of
the addition.

For the two's column on the right, call the
carried-in bit Cin and next carry Cout.

We need to modify our half-adder to have a
third input Cin and update the computations
for Carry (Cout) and Sum.

 <- carried bits

1 0 0 1 +

0 0 1 1 =

Cout Cin

1

0 0

1

11

31

Addition with Gates – Full Adder
Start with the needed values for Cout and Sum. With a little problem solving and
logic that are beyond the requirements of this course, we can determine that:
• Cout is equivalent to ((X Y) C∨ ∧ in) (X Y)∨ ∧

• Sum is the result of (X Y) C⊕ ⊕ in

Cin X Y Cout= ((X Y) C∨ ∧ in) (X Y)∨ ∧ Sum = (X Y) C⊕ ⊕ in

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0

32

Addition with Gates – N-bit Adder

Finally, to add two four-bit numbers
together, we can just chain together
the Full Adder we've created four
times.

Instead of inputting Cin, we pass in
the Cout from the prior computation
(and pass in 0 for the 1s digit). This
process repeats the concept of the
Full Adder multiple times in order to
make a more complex circuit.

The result is really confusing to look
at...

33

Addition with Gates – N-bit Adder

To make this easier to understand, use
abstraction to replace each Full Adder
with a box. That box holds the Full Adder
circuit within it, but it doesn't need to
bother with all the internal components.

Now we can do proper addition!

Let's try it out. What's 9 + 3?
• 9 is 8+1=1001, 3 is 2+1=0011
• Walk through the full adders...
• The output is 1100=8+4
• That's 12! It works!

34

Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've
designed to build an actual hardware
circuit that does 4-bit addition (or
more!).

See a demo of what that looks like
here:
https://youtu.be/wvJc9CZcvBc?t=742

https://youtu.be/wvJc9CZcvBc?t=742

35

Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms
and abstraction

	Slide 1
	Circuits and Gates
	Announcements
	Slide 4
	Learning Goals
	Computers Run on Hardware
	Bits are Electric Voltage
	Circuits Manipulate Voltage
	Logical Gates
	Gates are Hardware's Boolean Operations
	Basic Gates – Actual Hardware
	Basic Gates – Shorthand
	Circuit Simulation
	Algorithms with Gates
	Multiple Representations of Gate Algorithms
	Truth Tables Show All Possibilities
	Three Representations
	Truth Table Clarify Complex Expressions
	Truth Table to Boolean Expression to Circuit
	Circuit to Boolean Expression to Truth Table
	Conversion Chart
	Activity: Find the positive inputs!
	A Few More Gates
	Abstraction with Gates
	Writing Real Algorithms with Circuits
	Addition with Gates
	Addition with Gates – Half-Adder
	Addition with Gates Over Multiple Digits
	Addition with Gates – Full Adder
	Addition with Gates – N-bit Adder
	Addition with Gates – N-bit Adder (2)
	Sidebar: see a 4-bit Adder in Hardware
	Learning Goals (2)

