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Hw1 – Awesome Fences!



Circuits and Gates
15-110 – Wednesday 09/13
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Announcements

• Hw1 feedback released
• Make sure to view programming feedback!
• Tutorial on website
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Quizlet
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Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms 
and abstraction
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Computers Run on Hardware

Software: the abstracted concepts of 
computation- how computers represent 
data, and how programs can manipulate 
data.

Hardware: the actual physical components 
used to implement software, like the laptop 
components shown to the right.

All the operations we perform on a 
computer correspond to physical actions 
within the hardware of the machine. How 
does this work?
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Bits are Electric Voltage

We previously discussed how 
everything in a computer is represented 
using bits (0s and 1s).

In hardware, bits are represented as 
electrical voltage. A high level of 
voltage is considered a 1; a low level of 
voltage is considered a 0.

By redirecting electrical flow throughout 
a system, we can change the values of 
data in hardware.
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Circuits Manipulate Voltage

The computer uses circuits to perform 
computational actions. Circuits redirect 
electricity to different parts of hardware.

Physical components of circuits (like 
transistors and capacitors) are out of the 
scope of this class. If you're interested, take 
an Intro to Electrical Engineering class!

Instead, we will discuss how to use gates, 
which are abstracted circuit components. 
Every gate we discuss can be directly 
translated to a real hardware circuit.
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Logical Gates
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Gates are Hardware's Boolean Operations

Recall that Booleans have two values (True and False), just like bits 
(1/high voltage and 0/low voltage).

We can build a gate to have the same effect as a Boolean operation, 
but with bits as input/output instead of True/False values.

Let's start with three familiar gates: and, or, and not.
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Basic Gates – Actual Hardware
Our three basic gates can be represented in actual hardware

An and gate takes two inputs and 
outputs 1 only if both inputs were 1

An or gate takes two inputs and 
outputs 1 if either input was 1

A not gate takes one input and 
outputs the reverse (1 becomes 0, 0 
becomes 1)
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Basic Gates – Shorthand
We'll use a shorthand when building circuits with these gates

An and gate takes two inputs and 
outputs 1 if both inputs were 1

An or gate takes two inputs and 
outputs 1 if either input was 1

A not gate takes one input and 
outputs the reverse (1 becomes 0, 0 
becomes 1)

A
B A  B∧

A
B A  B∨

A ¬ A

A B A  ∧
B

1 1 1

1 0 0

0 1 0

0 0 0
A B A  B∨

1 1 1

1 0 1

0 1 1

0 0 0

A ¬ A

1 0

0 1
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Circuit Simulation

When working with gates, it can 
help to simulate a circuit using the 
gates to investigate how they 
work.

There are lots of free online circuit 
simulators. We'll use this one: 
https://logic.ly/demo

https://logic.ly/demo
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Algorithms with Gates
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Multiple Representations of Gate Algorithms

Just like with Boolean expressions, we can combine gates together in 
different orders to achieve different results. This lets us build 
algorithms using gates.

When we want to represent an algorithm that uses gates, we can use 
one of three different representation formats: a Boolean expression, a 
circuit, or a truth table.
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Truth Tables Show All Possibilities

So far, we've used truth tables to show all the 
outcomes of a single gate or operation.

We can also use these tables to show all the 
possible inputs and outputs of expressions.

For example, the truth table to the right shows 
all possibilities for the following expression:
X  ¬Y∨

As a Boolean expression, this would be:
X or (not Y)

X Y ¬Y X  ¬Y∨

1 1 0 1

1 0 1 1

0 1 0 0

0 0 1 1
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Three Representations

Boolean Expressions, Circuits, and Truth Tables can all be used to 
represent the same algorithm. Why do we use all three?

• Boolean Expressions are good for quickly representing an algorithm in 
text
• Circuits are a more visual option, and more interactive
• Truth Tables lay out all inputs and outputs, which helps derive 

algorithms
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Truth Table Clarify Complex Expressions
Truth tables are especially useful when you need to determine the output of a fairly 
complex expression, like the rightmost column here. You can break down the 
expression into smaller parts and give each part its own column.

A B C (A  B  C)  (A  ¬B  ¬C)  (¬A  B  ¬C)  (¬A  ¬B  C) ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

A B C A  B  C∧ ∧ A  ¬B  ¬C∧ ∧ ¬A  B  ¬C∧ ∧ ¬A  ¬B  C∧ ∧ (A  B  C)  (A  ¬B  ¬C)  (¬A  B  ¬C)  (¬A  ¬B  C) ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧

1 1 1 1 0 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 1

0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0
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Truth Table to Boolean Expression to Circuit

We can use a truth table to derive a bit 
expression from a set of inputs and outputs; 
for example, the truth table shown on the 
right matches the expression below it. This 
requires deep problem solving, so it is too 
complex to cover in this class. 

Once we have the bit expression, we can 
use it to create a corresponding circuit. Just 
combine the appropriate gates in the order 
specified by the parentheses.

The three representations shown to the 
right all express the exact same logical 
combination!

B  (A  C)∧ ∨

A B C ???

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0
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Circuit to Boolean Expression to Truth Table

Likewise, given a circuit, we can construct its truth 
table or the equivalent bit expression.

Given the circuit shown below, we can construct a 
truth table either by logically determining the result, 
or by simulating all possible input combinations. We 
can also find the equivalent Boolean expression by 
translating gates to Boolean operators.

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

¬A  (B  C)∧ ∨



Conversion Chart
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A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

¬A  (B  C)∧ ∨

Try all possible input 
combinations

Use problem solving 
and logic

Use
 problem so

lvi
ng 

and lo
gic

Try
 all p

ossi
ble in

put 

co
mbinations

Convert gates to 

Boolean operators

Convert Boolean 

operators to gates
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Activity: Find the positive inputs!

Convert the following circuit to 
the equivalent Boolean 
Expression, then write the 
equivalent truth table.

Which input combinations will 
result in the circuit outputting 1 
(the light bulb lighting up)?

and or not
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A Few More Gates
Let's add a few more gates to simplify our circuits.

A nand gate is ¬ (A  B)∧

A nor gate is ¬ (A  B)∨

An xor gate is 1 if exactly one of A and 
B are 1 (and the other is 0). It is the 
same as (A  ¬B)  (¬A  B).∧ ∨ ∧

A
B ¬ (A  B)∧

A
B ¬ (A  B)∨

A  B⊕

A B ¬ (A  B)∧

1 1 0

1 0 1

0 1 1

0 0 1

A B ¬ (A  B)∨

1 1 0

1 0 0

0 1 0

0 0 1

A B A  B⊕

1 1 0

1 0 1

0 1 1

0 0 0

A
B
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Abstraction with Gates
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Writing Real Algorithms with Circuits

Now that we know the basics of interacting with gates and circuits, we 
can start building circuits that do real things.

We'll focus on a basic action that computers do all the time:          
integer addition.
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Addition with Gates

Let's say that we want to build a circuit 
that takes two numbers (represented in 
binary), adds them together, and 
outputs the result. How do we do this?

First, simplify. Let's solve a subproblem. 
How do we add two one-bit numbers, X 
and Y? What are all the possible inputs 
and outputs?

Note that 1 + 1 = 10 because we're 
working in binary

X Y X + Y

1 1 10

1 0 01

0 1 01

0 0 00
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Addition with Gates – Half-Adder

Because we need two digits to hold the 
result, we need two result values: Sum 
(the 1s digit) and Carry (the 2s digit).

How can we compute Sum and Carry 
logically? Examine the truth table: Sum 
is just an Xor function, and Carry is just 
an And function! 

We can make a circuit to do one-bit 
addition, as is shown on the right. This 
is called a Half-Adder.

X Y X + Y Carry Sum X  ∧
Y

X  Y⊕

1 1 10 1 0 1 0

1 0 01 0 1 0 1

0 1 01 0 1 0 1

0 0 00 0 0 0 0
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Addition with Gates Over Multiple Digits

Now expand the circuit to handle numbers 
with multiple bits (e.g. 4-bit numbers). What 
needs to change?

When adding two numbers, we might need to 
carry an output over to the next column of 
the addition. 

For the two's column on the right, call the 
carried-in bit Cin and next carry Cout.

We need to modify our half-adder to have a 
third input Cin and update the computations 
for Carry (Cout) and Sum.

        <- carried bits

1 0 0 1 +

0 0 1 1 =

-------

Cout Cin

1

0 0

1

11
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Addition with Gates – Full Adder
Start with the needed values for Cout and Sum. With a little problem solving and 
logic that are beyond the requirements of this course, we can determine that:
• Cout is equivalent to ((X  Y)  C∨ ∧ in)  (X  Y)∨ ∧

• Sum is the result of (X  Y)  C⊕ ⊕ in

Cin X Y Cout=  ((X  Y)  C∨ ∧ in)  (X  Y)∨ ∧ Sum =  (X  Y)  C⊕ ⊕ in

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0
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Addition with Gates – N-bit Adder

Finally, to add two four-bit numbers 
together, we can just chain together 
the Full Adder we've created four 
times.

Instead of inputting Cin, we pass in 
the Cout from the prior computation 
(and pass in 0 for the 1s digit). This 
process repeats the concept of the 
Full Adder multiple times in order to 
make a more complex circuit.

The result is really confusing to look 
at...
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Addition with Gates – N-bit Adder

To make this easier to understand, use 
abstraction to replace each Full Adder 
with a box. That box holds the Full Adder 
circuit within it, but it doesn't need to 
bother with all the internal components.

Now we can do proper addition!

Let's try it out. What's 9 + 3?
• 9 is 8+1=1001, 3 is 2+1=0011
• Walk through the full adders...
• The output is 1100=8+4
• That's 12! It works!
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Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've 
designed to build an actual hardware 
circuit that does 4-bit addition (or 
more!).

See a demo of what that looks like 
here: 
https://youtu.be/wvJc9CZcvBc?t=742

https://youtu.be/wvJc9CZcvBc?t=742
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Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms 
and abstraction
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