
Recursion
15-110 – Wednesday 09/27

2

Quizlet

3

Announcements

● Piazza poll for exam review topics
– Respond by Friday 09/29 at noon

4

Learning Objectives

• Define and recognize base cases and recursive cases in
recursive code

• Read and write basic recursive code

5

Concept of Recursion

6

Concept of Recursion

Recursion is a concept that shows up commonly in computing and in
the world.

Core idea: an idea X is recursive if X is used in its own definition.

Example: fractals; nesting dolls; your computer's file system

7

Why Use Recursion?

Recursion is a hard concept to master because it is different from how
we typically approach problem-solving.

But recursion also makes it possible for us to solve some problems with
simple, elegant algorithms. It also lets us think about how to structure
data in new ways.

We'll start by using recursion to solve very simple problems, then show
how it applies more naturally to complex problems in the future.

8

Recursion in Algorithms

When we use recursion in algorithms, it's generally used to implement
delegation in problem solving, sometimes as an alternative to iteration.

To solve a problem recursively:
1. Find a way to make the problem slightly smaller
2. Delegate solving that problem to someone else
3. When you get the smaller-solution, combine it with the solution to

the remaining part of the problem to get the answer

9

Example: Iteration vs. Recursion

How do we add the numbers on a deck of cards?

Iterative approach: keep track of the total so far, iterate over the cards,
add each to the total.

Recursive approach: take a card off the deck, delegate adding the rest
of the deck to someone else, then when they give you the answer, add
the remaining card to their sum.

10

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Pre-Loop:

total 0

cards 5 2 7 3

11

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

First iteration:

total 0

i 0

cards

5

5 2 7 35 2 7 3

12

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Second iteration:

total 5

i 0

cards

7

5 2 7 35 2 7 3

1

13

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Third iteration:

total 7

i 1

cards

14

5 2 7 35 2 7 3

2

14

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Fourth iteration:

total 14

i 2

cards

17

5 2 7 35 2 7 3

3

And we're done!

15

Iteration in Code

We could implement this in code with the following function:

def iterativeAddCards(cards):
 total = 0
 for i in range(len(cards)):
 total = total + cards[i]
 return total

16

Implementing Recursion

Now let's add the same deck of cards using recursion.

Start State:

total 0

cards 5 2 7 3

17

Implementing Recursion

Now let's add the same deck of cards using recursion.

Make the problem smaller:

total 0

cards 5 2 7 35 2 7 3

18

Implementing Recursion

Now let's add the same deck of cards using recursion.

Delegate that smaller problem:

total 0

cards 5 2 7 3

This is the Recursion
Genie. They can solve
problems, but only if
the problem has been
made slightly smaller
than the start state.

19

Implementing Recursion

Now let's add the same deck of cards using recursion.

Get the smaller problem's solution:

total 0

cards 5 2 7 3

12

20

Implementing Recursion

Now let's add the same deck of cards using recursion.

Combine the leftover solution with the smaller solution:

total 0

cards 5 2 7 3

125 +

17

And we're done!

21

Recursion in Code

Now let's implement the recursive approach in code.

def recursiveAddCards(cards):
 smallerProblem = cards[1:]
 smallerResult = ??? # how to call the genie?
 return cards[0] + smallerResult

22

Base Cases and Recursive Cases

23

Big Idea #1: The Genie is the Algorithm
Again!
We don't need to make a new algorithm to implement the Recursion Genie. Instead,
we can just call the function itself on the slightly-smaller problem.

Every time the function is called, the problem gets smaller again. Eventually, the
problem reaches a state where we can't make it smaller. We'll call that the base case.

2 7 3

7 3
3

5 2 7 3

24

Big Idea #2: Base Case Builds the Answer
When the problem gets to the base case, the answer is immediately known. For example, in adding
the numbers on a deck of cards, the sum of an empty deck is 0.

That means the base case can solve the problem without delegating. Then it can pass the solution
back to the prior problem-solver and start the chain of solutions.

2 7 3

7 3
3

5 2 7 3

0

125 +17

03 +
37 +

102 +

25

Recursion in Code – Recursive Call

To update our recursion code, we'll take two steps. First, we need to
add the call to the function itself.

def recursiveAddCards(cards):
 smallerProblem = cards[1:]
 smallerResult = ???
 return cards[0] + smallerResult

def recursiveAddCards(cards):
 smallerProblem = cards[1:]
 smallerResult = recursiveAddCards(smallerProblem)
 return cards[0] + smallerResult

26

Recursion in Code – Base Case

Second, we add in the base case as an explicit instruction about what to do
when the problem cannot be made any smaller.

def recursiveAddCards(cards):
 if ???
 ????
 else:
 smallerProblem = cards[1:]
 smallerResult = recursiveAddCards(smallerProblem)
 return cards[0] + smallerResult

def recursiveAddCards(cards):
 if cards == []:
 return 0
 else:
 smallerProblem = cards[1:]
 smallerResult = recursiveAddCards(smallerProblem)
 return cards[0] + smallerResult

27

Every Recursive Function Includes Two Parts

These two big ideas are used in all recursive algorithms.
• Base case(s): One or more simple cases that can be solved with no further

work
• Recursive case(s): One or more cases that require solving "simpler"

(smaller/shorter/closer to the base case) version(s) of the original problem
def recursiveAddCards(cards):

 if cards == []:

 return 0

 else:

 smallerProblem = cards[1:]

 smallerResult = recursiveAddCards(smallerProblem)

 return cards[0] + smallerResult

base case

recursive
case

28

Python Tracks Recursion with Code Tracing!

Recall how we used tracing with bookmarks to keep track of nested
function calls. Python also uses this approach to track recursive calls!

Because each function call has its own set of local variables (which
includes function parameters), the values across functions don't get
confused.

Let's switch to a different slide deck for an example.

29

Activity: Base Case/Recursive Case

Let's design a non-code algorithm for
baking a multi-layer cake. You want to
bake a cake that has n layers, but you
can only bake one layer at a time. You
want to use recursion to solve this
problem.

You do: in general terms, what is the
base case for this problem? And in the
recursive case, how do we make the
problem smaller and combine the
results? You don't need to write code,
just consider the algorithmic cases.

30

Programming with Recursion

31

General Recursive Form

Thinking of recursive algorithms can be tricky at first. However, most of the simple
recursive functions you write can take the following form:

def recursiveFunction(problem):
 if problem == ???: # base case is the smallest value
 return ____ # something that isn't recursive
 else:
 smallerProblem = ??? # make the problem smaller
 smallerResult =
recursiveFunction(smallerProblem)
 return ____ # combine with the leftover part

32

Important: Return Types Must Match!

When you write a recursive function, always remember that the base case
must return the same type as the recursive case.

If the types are different, you'll have a problem combining the next step
with the smaller-result because the type of the smaller-result will be
inconsistent.

Also make sure that you always provide the correct type in the argument
given to the recursive function call. It must match the type of the
function's parameter.

33

Example: factorial

Assume we want to implement factorial
recursively (takes an int, returns an int).
Recall that:

x! = x*(x-1)*(x-2)*...*2*1

We could rewrite that as...

x! = x * (x-1)!

What's the base case?
x == 1

What's the smaller problem?
x - 1

How to combine it?
Multiply result of (x-1)! by x

34

Writing Factorial Recursively

We can take these algorithmic components and combine them with the
general recursive form to get a solution.

def factorial(x):
 if x == 1: # base case
 return 1 # something not recursive
 else:
 smaller = factorial(x - 1) # recursive call
 return x * smaller # combination

35

Sidebar: Infinite Recursion Causes
RecursionError
What happens if you call a function on an input that
will never reach the base case? It will keep calling
the function forever!

Example: factorial(5.5)

Python keeps track of how many function calls have
been added to the stack. If it sees there are too
many calls, it raises a RecursionError to stop
your code from repeating forever.

If you encounter a RecursionError, check a)
whether you're making the problem smaller each
time, and b) whether the input you're using will ever
reach the base case.

36

Example: countVowels(s)

Let's do another example. Write the function countVowels(s) that takes a
string and recursively counts the number of vowels in that string, returning an int.
For example, countVowels("apple") would return 2.

def countVowels(s):

 if ____________: # base case

 return ________

 else: # recursive case

 smaller = countVowels(_______)

 return ______________

37

Example: countVowels(s)

We make the string smaller by removing one letter. Change the code's behavior based on whether
the letter is a vowel or not.

def countVowels(s):

 if s == "": # base case

 return 0

 else: # recursive case

 smaller = countVowels(s[1:])

 if s[0] in "AEIOU":

 return 1 + smaller

 else:

 return smaller

38

Example: countVowels(s)

An alternative approach is to make multiple recursive cases based on the smaller part.

def countVowels(s):

 if s == "": # base case

 return 0

 elif s[0] in "AEIOU": # recursive case

 smaller = countVowels(s[1:])

 return 1 + smaller

 else:

 smaller = countVowels(s[1:])

 return smaller

39

Example: removeDuplicates(lst)

Let's do one final example. Write the function removeDuplicates(lst) that
takes a list of items and recursively generates a new list that contains only one of
each unique item from the original list. For example, removeDuplicates([1,
2, 1, 2, 3, 4, 3, 3]) might return [1, 2, 3, 4].

def removeDuplicates(lst):

 if ____________: # base case

 return ________

 else: # recursive case

 smaller = removeDuplicates(_______)

 return ______________

40

Example: removeDuplicates(lst)

The recursive case generates a list that holds only unique elements. Just check whether the remaining
element is already in that list or not!

def removeDuplicates(lst):

 if lst == []: # base case

 return []

 else: # recursive case

 smaller = removeDuplicates(lst[1:])

 if lst[0] in smaller:

 return smaller

 else:

 return [lst[0]] + smaller

41

Activity: recursiveMatch(lst1,
lst2)
You do: Write recursiveMatch(lst1, lst2), which takes two lists of equal
length and returns the number of indexes where lst1 has the same value as
lst2.

For example, recursiveMatch([4, 2, 1, 6], [4, 3, 7, 6]) should
return 2.

Note: you can index into and slice both lists at the same time!

Another note: when it comes to writing recursive code, be optimistic. Write a
solution that should work assuming the recursive call gives the proper result.

42

Learning Objectives

• Define and recognize base cases and recursive cases in recursive code

• Read and write basic recursive code

	Recursion
	Slide 2
	Slide 3
	Learning Objectives
	Concept of Recursion
	Concept of Recursion (2)
	Why Use Recursion?
	Recursion in Algorithms
	Example: Iteration vs. Recursion
	Implementing Iteration
	Implementing Iteration (2)
	Implementing Iteration (3)
	Implementing Iteration (4)
	Implementing Iteration (5)
	Iteration in Code
	Implementing Recursion
	Implementing Recursion (2)
	Implementing Recursion (3)
	Implementing Recursion (4)
	Implementing Recursion (5)
	Recursion in Code
	Base Cases and Recursive Cases
	Big Idea #1: The Genie is the Algorithm Again!
	Big Idea #2: Base Case Builds the Answer
	Recursion in Code – Recursive Call
	Recursion in Code – Base Case
	Every Recursive Function Includes Two Parts
	Python Tracks Recursion with Code Tracing!
	Activity: Base Case/Recursive Case
	Programming with Recursion
	General Recursive Form
	Important: Return Types Must Match!
	Example: factorial
	Writing Factorial Recursively
	Sidebar: Infinite Recursion Causes RecursionError
	Example: countVowels(s)
	Example: countVowels(s) (2)
	Example: countVowels(s) (3)
	Example: removeDuplicates(lst)
	Example: removeDuplicates(lst) (2)
	Activity: recursiveMatch(lst1, lst2)
	Learning Objectives (2)

