
Search Algorithms II
15-110 – Monday 10/23

2

Announcements

• Welcome back from fall break!

• Check3/Hw3 Revision deadline: tomorrow at noon

• Final exam scheduled: Monday, December 11, 8:30-11:30am
• Do not schedule travel before this time!

• Remember to fill out the mid-semester surveys

• See announcement on Piazza

3

Learning Objectives

• Identify whether a tree is a tree, a binary tree, or a binary search tree
(BST)

• Search for values in trees using linear search and in BSTs using binary
search

• Analyze the efficiency of binary search on a balanced vs. unbalanced BSTs

• Recognize the requirements for building a good hash function and a good
hashtable that lead to constant-time search

4

Binary Search Trees

5

Revisiting Search Algorithms

Recall the first lecture on Search Algorithms, when we discussed linear
and binary search.

We've applied these algorithms to lists; can we apply them to other
data structures too? Let's investigate how to search a tree.

6

Linear Search on a Tree

In linear search, we step through each
element in a list until we either find the
target item or run out of items to look at.

To visit all nodes in a tree, check if each node
is the target, then check whether the target
is in one of the node's child subtrees. If we
find the target in either subtree, we should
return True.

We also have two base cases: one for when
we reach an empty tree, and one for when
we find the target. In both cases, we know
what to return right away.

def search(t, target):

 if t == None:

 return False

 elif t["contents"] == target:

 return True

 else:

 leftSide = search(t["left"], target)

 rightSide = search(t["right"], target)

 return leftSide or rightSide

7

Binary Search on a Tree

If we want to search trees more efficiently, we'll need to apply
constraints. For example, how could we apply Binary Search to a tree?

First, recall that for binary search to work the input list must be sorted.
We'll also need to find a way to split the tree similarly to how we split
the list in binary search (where we broke the list into two sides and only
looked at one side).

Discuss: how could we "sort" and "split" a tree?

8

Binary Search Trees (BSTs) are "sorted"

We'll define a new kind of tree, a Binary Search
Tree, as a binary tree that follows these
constraints:

For every node n with value v:

• Each left child (and all its children, etc.) must
have values strictly less than v

• Each right child (and all its children, etc.) must
have values strictly greater than v

Note: the left and right subtrees are BSTs! BST
constraints are recursive.

7

3 8

6 92

4

71

6

9

8

3

Example: Is this a BST?

9

3

51

4

6

82

10

Binary Search Trees Can Use Binary Search

When we want to search for the value 5 in
the tree to the left, we start at the root
node, 7. Because all nodes less than 7 must
be in the left child tree and 5 is less than 7,
we only need to search the left child tree.

Then, when we compare 5 to 3, we know
that all values greater than 3 (but less than
7) must be in the right child of 3. 5 is greater
than 3, so we only need to search the right
child.

We 'split' the tree by only looking at one of
the node's two children.

7

3 8

6 92

7

3

6

11

BST Search in Python
We would write binary search for a BST as follows:

def search(t, target):

 if t == None:

 return False

 elif t["contents"] == target:

 return True

 elif target < t["contents"]:

 return search(t["left"], target)

 else:

 return search(t["right"], target)

Note that we do just one recursive call, either on the left subtree or on the right subtree.

12

BST Search Runtime – Balanced Trees

Do we get the same O(log n) runtime for
BST binary search that we did for list binary
search? It depends on the tree.

A tree is balanced if for every node in the
tree, the node's left and right subtrees are
approximately the same size. This results in
a tree that minimizes the number of
recursive levels.

Every time you take a search step in a
balanced tree, you cut the number of nodes
to be searched in half. This means that the
algorithm will indeed take O(log n) time.

6

3 8

5 92 7

13

BST Search Runtime – Unbalanced Trees

A tree is considered unbalanced if at least one
node has significantly different sizes in its left
and right children. For example, consider the
tree on the right.

This is a valid BST, but it is still difficult to search!
You must visit every single node to determine a
number like 6 isn't in the tree. In the worst case,
this can still take O(n) time.

When we put data into BSTs, we usually strive
to make them balanced to avoid these edge
cases. For efficiency purposes, assume our BSTs
are balanced and the worst case is O(log n).

9

8

5

3

7

14

Benefits of BSTs

At first glance, BSTs may seem less useful than sorted lists. However, they have a
few added perks!

BSTs make it much easier to add new data to a dataset. In a sorted list, you would
need to slide a bunch of values over to make room for a new value; in a BST, you
can just run a search for this new value. When you reach a leaf, add a node with
the new value.

This is very helpful for systems like hospital priority queues, where patients
frequently need to be moved around the queue based on changing circumstances.

In general, try to choose a data structure that matches the task you need to solve.

15

Can We Do Even Better?

We've now shown that we can apply linear search and binary search in
several circumstances. Binary search is faster than linear search, but can
we do even better?

We can often increase the efficiency of an algorithm by thinking about
the problem in a different way. Try using a different data structure or an
entirely different algorithmic approach to solve the problem. Or try
putting new constraints on the problem to speed the process up.

New goal: can we design the fastest possible search algorithm?

Optimizing Search: Constraints

16

Search in Real Life – Post Boxes

Consider how you receive mail. Your mail is sent to the post boxes at the lower level of the
UC. Do you have to check every box to find your mail?

No - you just check the box assigned to you.

This is possible because your mail has an address on the front that includes your mailbox
number. Your mail will only be put into a box that has the same number as that address,
not other random boxes. Picking up your mail is a O(1) operation!

Compare this to picking up a package. Everyone picks up packages at the same window, so
you must wait in line. If there are n students, picking up a package is a O(n) operation.

17

Search in Programming – List Indexes

We can't search a list for an item that quickly,
because we don't know where the item will be.
But we can look up an item based on its index
with a single operation!

How is this possible? Python stores lists in
memory as a series of adjacent parts. Each part
holds a single value in the list, and all these parts
use the same amount of space.

We can calculate exactly where an index is
located in memory; no repeated search is
required.

18

lst

"a" "abc" True
8 bytes 8 bytes 8 bytes 8 bytes8 bytes 8 bytes

Combine the Concepts

To implement super-fast search, we want to combine the ideas of post
boxes and list index lookup. We want to determine which index a value
should be stored in based on the value itself.

If we can calculate the index based on the value, we can retrieve the
value really quickly without needing to check other indexes.

19

Hash Functions Map Values to Integers

In order to determine which list index should be used based on the value
itself, we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This function
must follow two rules:

• The function should be deterministic. Given a specific value x, hash(x)
must always return the same output i.

• The function should produce different outputs. Given two different values
x and y, hash(x) and hash(y) should usually return two different
outputs, i and j.

20

Built-in Hash Function

We don't need to write our own hash function most of the time-
Python already has one!

x = "abc"
hash(x) # some giant number

hash works on integers, floats, Booleans, strings, and some other
types as well.

21

Optimizing Search: Hashtables

22

Hashtables Organize Values

Now that we have a hash function, we can use it
to organize values in a special data structure.

A hashtable is a list with a fixed number of
indexes. When we place a value in the list, we
put it into an index based on its hash value
instead of placing it in the first open position of
the list.

We often call these indexes 'buckets'. For
example, the hashtable to the right has four
buckets.

Important: actual hashtables are huge and have
far more buckets than this!

23

index 0 index 1 index 2 index 3

Adding Values to a Hashtable
For simplicity, let's say this hashtable uses a
hash function that maps strings to indexes
using the first letter of the string, as shown to
the right. (This is not a good hash function,
but it will serve as an example).

First, add "book" to the table.
hash("book") is 1, so we'll put the value
in bucket 1.

Next, add "yay". hash("yay") is 24,
which is outside the range of our table. How
do we assign it?

Use value % tableSize to map integers
larger than the size of the table to an index.
24 % 4 = 0, so we put "yay" in bucket 0.

24

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
 return alphabet.index(s[0])

index 0 index 1 index 2 index 3

"book""yay" "book"

Dealing with Collisions

When you add lots of values to a
hashtable, two elements may collide.
This happens if they are assigned to the
same index. For example, if we try to
add both "cmu" and "code" to our
table, they will collide.

Hashtables are designed to handle
collisions. One algorithm for handling
collisions is to put the collided values in
a list and put that list in the bucket. If
your table size is reasonably big and the
indexes returned by the hash function
are reasonably spread out, each bucket
will usually hold a small number of
values.

25

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
 return alphabet.index(s[0])

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "code""yay" "book" "cmu"
"code"

Our example hash function is not
good because it only looks at the
first letter. A function that uses all
the letters would be better.

You Do: Search a Hashtable

Let's say that we want to
algorithmically check whether the
string "friday" is in our
hashtable.

You do: Which buckets does the
algorithm need to check?

26

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
 return alphabet.index(s[0])

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"code"

Searching a Hashtable is Fast!

To search for a value, call the hash function on
the value and mod the result by the table size.
The index produced is the only index you need
to check!

For example, we can check if "book" is in the
table just by checking bucket 1.

If the value is in the table, it will be at that
index. If it isn't, it won't be anywhere else
either. To check for "stella" just look in in
bucket 2.

Because we only need to check one index and
each index holds a constant number of items,
finding a value only takes O(1) time, even if the
hashtable is huge. Wow!

27

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"code"

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
 return alphabet.index(s[0])

Caveat: Don't Hash Mutable Values!

What happens if you try to put a list in a
hashtable? Let's set lst = ["a", "z"] and
use the given hash to add lst.

This might seem fine at first, but it will become a
problem if you change the list before searching.
Let's say we set lst[0] = "d".

When we hash the list again, the hashed value is
3, not 0. But the list isn't stored in bucket 3! We
can't find it reliably.

For this reason, we don't put mutable values into
hashtables. If you try to run the built-in hash on a
list, it will crash.

28

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"code"

"yay"
["a", "z"]

"book" "cmu"
"code"

"yay"
["d", "z"]

"book" "cmu"
"code"

"yay"
["a", "z"]

"book" "cmu"
"code"

alphabet = "abcdefghijklmnopqrstuvwxyz"
def hash(s):
 return alphabet.index(s[0])

Dictionaries Use Hashed Search

Because hashed search requires immutable search values and a
hashtable, it isn't used in lists or strings. However, it is used to implement
dictionary search.

Recall that the keys of a dictionary must be immutable. This is because
those keys are all stored in a hashtable. Each key points to its own value;
that's how values can still be accessed.

This means that searching for a key in a dictionary is O(1)! Dictionaries are
super efficient for basic lookup tasks.

29

Searching Dictionaries vs. Lists

This has a practical effect on the efficiency of the programs you write. Recall the built-
in operator in, which checks for membership in a data structure.

item in lst runs in linear time if lst is a list, because Python can't guarantee
that the list is sorted. It uses linear search.

item in dict runs in constant time if dict is a dictionary, because Python uses
hashing.

If you know that you'll need to do a lot of searching for specific values, it's better to
store your data in a dictionary than a list, even if it’s a sorted list!

30

The Power of Hashing

Hashed search is absurdly fast! It doesn't matter how large your dataset
is; you can always look up a value in the same amount of time.

This ridiculous speed of hashed search has made search a common tool
across all computational devices.

Discuss: how would your interactions on your computer, smartphone,
or other digital devices be different if search was slower? How would
this affect your day-to-day life?

31

32

Learning Objectives

• Identify whether a tree is a tree, a binary tree, or a binary search tree
(BST)

• Search for values in trees using linear search and in BSTs using binary
search

• Analyze the efficiency of binary search on a balanced vs. unbalanced
BSTs

• Recognize the requirements for building a good hash function and a
good hashtable that lead to constant-time search

	Search Algorithms II
	Announcements
	Learning Objectives
	Binary Search Trees
	Revisiting Search Algorithms
	Linear Search on a Tree
	Binary Search on a Tree
	Binary Search Trees (BSTs) are "sorted"
	Example: Is this a BST?
	Binary Search Trees Can Use Binary Search
	BST Search in Python
	BST Search Runtime – Balanced Trees
	BST Search Runtime – Unbalanced Trees
	Benefits of BSTs
	Can We Do Even Better?
	Optimizing Search: Constraints
	Search in Real Life – Post Boxes
	Search in Programming – List Indexes
	Combine the Concepts
	Hash Functions Map Values to Integers
	Built-in Hash Function
	Optimizing Search: Hashtables
	Hashtables Organize Values
	Adding Values to a Hashtable
	Dealing with Collisions
	You Do: Search a Hashtable
	Searching a Hashtable is Fast!
	Caveat: Don't Hash Mutable Values!
	Dictionaries Use Hashed Search
	Searching Dictionaries vs. Lists
	The Power of Hashing
	Learning Objectives (2)

