
 Managing Large Code Projects
15-110 – Friday 11/03

2

Announcements

• Check5 due on Monday
• Can do most of Hw5's written component after today's lecture too!

• Exam2 on Wednesday 11/08 in McConomy
• TA Review Sessions:

● Saturday 11/04, 4pm in DH 2210 (Lists/Aliasing/Recursion)
● Sunday 11/05, 5:30pm in DH 2210 (Big O/Dictionaries/Trees/Graphs)

Midsemester Feedback Report

• Thanks to the 251 students who
filled out the midsemester
survey!

• Major takeaways:
• Average pace: 3.43/5. Slightly

reduced from last semester!

• Average hours per week: 8.1.
Expected hours/week is 10, so this
is great!

3

Midsemester Feedback Report

• Hardest topics: Recursion
(82.9%)

• Most useful course resources:
Slides (89%), Practice problems
(67%), reading or posting on
Piazza (44%)

4

Midsemester Feedback Report

• 42.2% of students collaborate
and it works great

• 25.1% of students don't yet
collaborate but want to! If you're
in this group, consider signing up
for the Hw5 collaboration form
to find collaborators:
https://forms.gle/8rg2ThG63iMV
37D27

5

6

Learning Goals

• Read and write data from files

• Implement and use helper functions in code to break up large
problems into solvable subtasks

7

Reading Data from Files

8

Reading Data From Files

As we start building more complex programs, we'll often need to refer to data stored elsewhere on
the computer. That means we need to read data from a file.

Recall that all the files on your computer are organized in directories, or folders. The file structure
in your computer is a tree – directories are the inner nodes (recursively nested) and files are the
leaves.

When you're working with files, always make sure you know which sequence of folders your file is
located in. A sequence of folders from the top-level of the computer to a specific file is called a
filepath.

For example, Users > krivers > Documents > sample.txt refers to the file sample.txt in the
Documents folder, which is in the krivers folder, which is in the Users folder, which is at the top
level of the computer.

9

Opening Files in Python

To interact with a file in Python we'll need to access its contents. We can do this by using the
built-in function open(filepath). This will create a File object which we can read from or
write to.

f = open("/Users/krivers/Documents/sample.txt")

open can either take a full filepath or a relative path (relative from the location of the python
file). It's usually easiest to put the file you want to read/write in the same directory as the
python file so you can simply refer to the filename directly.

f = open("sample.txt")
if .py file is in Documents, will search for this file there

10

Reading and Writing from Files

When we open a file we need to specify whether we plan to read from or write to the file. This will change the mode
we use to open the file.

filename = "sample.txt"
f = open(filename, "r") # read mode
text = f.read() # reads the whole file as a single string
or
lines = f.readlines() # reads the lines of a file as a list of strings

f = open("sample2.txt", "w") # write mode
f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a file once you're done with it.

f.close()

11

Be Careful When Programming With Files!

WARNING: when you write to files in Python, backups are not
preserved. If you overwrite a file, the previous contents are gone
forever.

Be careful when writing to files! Make sure you're using the correct
filename before you run the program. Avoid overwriting original data
whenever possible; you can always wait and delete it after you're done.

12

Activity: Read a File

You do: Download the file
chat.txt from the schedule
page and move it to the same
folder as a python script.

Try using open and read to open
the file and read the contents,
then print the contents.

Common file reading issues:
• make sure the file is actually in

the same directory as your
python script (check directory in
the %cd line when you run
Thonny)
• make sure the filename you've

entered is actually the right
filename (including the filetype
at the end!)

13

Helper Functions

14

Helper Functions

In Hw5 and Hw6 (and in projects you might work on outside of 15-110), the code
you write will be bigger than a single function. You'll often need to write many
functions that work together to solve a larger problem.

We briefly talked about how to call functions from other functions when we first
learned about function definitions and calls. Let's revisit the idea now.

We call a function that solves a subpart of a larger problem helper function. By
breaking up a large problem into multiple smaller problems and solving those
problems with helper functions, we can make complicated tasks more
approachable.

15

Designing Helper Functions

In Hw5 and Hw6 we've broken a problem down into helper functions
for you. But if you work on a separate project, you'll need to do this
process on your own.

Try to identify subtasks that are repeated or are separate from the
main goal; break down the problem into smaller parts. Have one
subtask per function to keep things simple.

16

Example: Tic-Tac-Toe

Consider the game tic-tac-toe. It seems simple, but it involves multiple
parts to play through a whole game.

Discuss: what are the subtasks of tic-tac-toe?

17

Breaking down Tic-Tac-Toe
Let's organize our tic-tac-toe game based on four core subtasks:

makeNewBoard(), which constructs and returns the starter board (a 2D list of strings)

showBoard(board), which displays a given board

takeTurn(board, player), which lets the given player ("X" or "O") make a move on
the board, returning the updated board

isGameOver(board), which returns True or False based on whether or not the game is
over

We'll only go over how to implement each function briefly. The most important thing right now
is how we use the helper functions in the main code.

18

Start With Assumptions
We'll start by assuming the helper functions already
work. Write a function that calls each helper function
in the appropriate place.

Start by calling makeNewBoard to generate the
board. Display the starting state by calling
showBoard.

Use a loop to iterate over every turn in the game.
Alternate a Boolean variable to decide whether it's X's
or O's turn, and call takeTurn on the board and the
appropriate player to decide which move to make. Call
showBoard again each time to show the updated
board.

Keep looping until the game is over by checking
isGameOver in the loop condition.

def playGame():

 print("Let's play tic-tac-toe!")

 board = makeNewBoard()

 showBoard(board)

 player1Turn = True

 while not isGameOver(board):

 if player1Turn:

 board = takeTurn(board, "X")

 else:

 board = takeTurn(board, "O")

 showBoard(board)

 player1Turn = not player1Turn

 print("Goodbye!")

19

makeNewBoard and showBoard

makeNewBoard and showBoard are
simple; we can program these just using
concepts we've already learned.

The board will be a 3x3 2D list with "."
for empty spaces, "X" for player X, and
"O" for player O.

Note that makeNewBoard takes no
parameters and returns a board,
whereas showBoard takes the board
and returns None. They match how we
used them before!

Construct the tic-tac-toe board
def makeNewBoard():
 board = []
 for row in range(3):
 # Add a new row to board
 board.append([".", ".", "."])
 return board

Print the board as a 3x3 grid
def showBoard(board):
 for row in range(3):
 line = ""
 for col in range(3):
 line += board[row][col]
 print(line)

20

takeTurn

takeTurn has the user input
the row and col they want to fill in
using our old friend input. This
is also similar to programs we've
written before!

Check to make sure the row and
col are numbers with isdigit
and ensure that they select a valid
and unfilled space with if
statements.

Keep looping until a valid location
is chosen. Update the board at
that spot, then return the
updated board.

Ask the user to input where they want
to go next with row,col position
def takeTurn(board, player):
 while True:
 row = input("Enter a row for " + player + ":")
 col = input("Enter a col for " + player + ":")
 # Make sure it's a number!
 if row.isdigit() and col.isdigit():
 row = int(row)
 col = int(col)
 # Make sure it's in the grid!
 if 0 <= row < 3 and 0 <= col < 3:
 if board[row][col] == ".":
 board[row][col] = player
 # stop looping when move is made
 return board
 else:
 print("That space isn't open!")
 else:
 print("Not a valid space!")
 else:
 print("That's not a number!")

21

isGameOver needs more helper functions
isGameOver is a bit more complicated. There
are multiple scenarios where the game can end-
if a player gets three in a row horizontally, or
vertically, or diagonally. The game can also end
if the board is filled.

Use more helper functions to break up the work
into parts! Generate strings holding all
rows/columns/diagonals with horizLines,
vertLines, and diagLines. Check if the
board is already full with isFull.

Now we can write the function assuming these
helpers already work.

True if game is over, False if not
def isGameOver(board):
 if isFull(board):
 return True
 allLines = horizLines(board) + \
 vertLines(board) + \
 diagLines(board)
 for line in allLines:
 if line == "XXX" or \
 line == "OOO":
 return True
 return False

22

isGameOver Helpers
Generate all horizontal lines
def horizLines(board):
 lines = []
 for row in range(3):
 lines.append(board[row][0] + \
 board[row][1] + \
 board[row][2])
 return lines

Generate all vertical lines
def vertLines(board):
 lines = []
 for col in range(3):
 lines.append(board[0][col] + \
 board[1][col] + \
 board[2][col])
 return lines

Generate both diagonal lines
def diagLines(board):
 leftDown = board[0][0] + \
 board[1][1] + \
 board[2][2]
 rightDown = board[0][2] + \
 board[1][1] + \
 board[2][0]
 return [leftDown, rightDown]

Check if the board has no empty spots
def isFull(board):
 for row in range(3):
 for col in range(3):
 if board[row][col] == ".":
 return False
 return True

Again, we can create the helper functions
for isGameOver using familiar logic.

23

Functions Work Together

Put it all together and you've got a fully working Tic-Tac-Toe game!

The most important takeaways are:
• Use helper functions to separate out complicated subtasks and make

the overall task easier to represent
• Thoughtfully consider which data will need to be passed into each

helper function call so it can find the correct answer
• Keep track of which data will be returned by each function call

24

Learning Goals

• Read and write data from files

• Implement and use helper functions in code to break up large
problems into solvable subtasks

	Managing Large Code Projects
	Announcements
	Midsemester Feedback Report
	Midsemester Feedback Report (2)
	Midsemester Feedback Report (3)
	Learning Goals
	Reading Data from Files
	Reading Data From Files
	Opening Files in Python
	Reading and Writing from Files
	Be Careful When Programming With Files!
	Activity: Read a File
	Helper Functions
	Helper Functions (2)
	Designing Helper Functions
	Example: Tic-Tac-Toe
	Breaking down Tic-Tac-Toe
	Start With Assumptions
	makeNewBoard and showBoard
	takeTurn
	isGameOver needs more helper functions
	isGameOver Helpers
	Functions Work Together
	Learning Goals (2)

