
15-110 Check3 - Written + Programming
Fall 2024

Name:

AndrewID:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results. Also complete the programming problems in the
starter file check3.py from the course website.

When you are finished, upload your check3.pdf to Check3 - Written on Gradescope,
and upload your check3.py file to Check3 - Programming on Gradescope. Make sure
to check the autograder feedback after you submit!

Written Problems
#1 - Tracing Lists - 12pts
#2 - Aliasing and Mutability - 21pts
#3 - Base Cases and Recursive Cases - 22pts

Programming Problems
#1 - sumAnglesAsDegrees(angles) - 10pts
#2 - Mutating and Non-Mutating Functions - 20pts
#3 - recursiveStringToList(lst) - 15pts



Written Problems

#1 - Tracing Lists - 12pts
Can attempt after Lists and Methods lecture

Trace the code below, then fill in the table with what it prints (one row per line).

You might not need to use all of the rows.



#2 - Aliasing and Mutability - 21pts
Can attempt after References and Memory lecture

The following code creates and modifies lists. Determine what the following lines would
print after the code has run.

Line Write what is printed to the terminal

print(a)

print(b)

print(c)

print(d)

Select all of the pairs of lists that are aliased at the end of the code.

☐ a and b

☐ a and c

☐ a and d

☐ b and c

☐ b and d

☐ c and d

☐ None of the lists are aliased



#3 - Base Cases and Recursive Cases - 22pts
Can attempt after Recursion lecture

Assume you want to write a function recursiveSum that takes a positive integer, n, and
recursively computes the sum from one to n.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your base case?

What do you return in the base case?

What is the recursive call on a smaller problem in the recursive case?

What do you return in the recursive case?



Programming Problems
For each of these problems (unless otherwise specified), write the needed code directly
in the Python file in the corresponding function definition.

All programming problems may also be checked by running 'Run current script' on the
starter file, which calls the function testAll() to run test cases on all programs.

#1 - sumAnglesAsDegrees(angles) - 10pts
Can attempt after Lists and Methods lecture

When analyzing data, you need to convert the data from one format to another before
processing it. For example, you might have a dataset where angles were measured in
radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in
radians (floats) and returns the sum of those angles in degrees (an integer). To do this,
you will need to loop over the angles and change each angle from radians to degrees
before adding it to the sum. You can do this with the library function math.degrees().
Make sure to round the final result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should
convert the radians to approximately 30.0, 45.0, and 180.0, then return 255.

Note: you are not allowed to use the built-in function sum for this problem (or any other
builtin function or method that behaves similarly). Use a loop instead!



#2 - Mutating and Non-Mutating Functions - 20pts
Can attempt after References and Memory lecture

First, write a non-mutating function findMultiples(lst, num) that takes a list of
integers and a positive integer and returns a new list containing only the elements of
lst that are also multiples of num.

For example, findMultiples([11, 20, 35, 43, 50, 66], 5) returns [20, 35,

50], and findMultiples([17, -77, 34, -95, 88], 11) returns [-77, 88].

Your findMultiples function must not modify the original list in any way.

Second, write a mutating function removeNonMultiples(lst, num) that does the
same thing, but by mutating the list. This function takes a list of integers and a positive
integer and mutates the list to remove the elements that are not multiples of num in the
provided list.

In other words, at the end of the function call lst should contain only the original
elements that are multiples of num. This function should return None instead of the list;
we'll test it by checking whether the input list was modified properly.

For example, removeNonMultiples([1, 2, 3, 4, 5, 6], 3) returns None and
mutates the list to be [3, 6], and removeNonMultiples([4, 5, 70, -3, 10], 2)

returns None and mutates the list to be [4, 70, 10]. Note that the relative order of the
elements does not change.

Hint: this is tricky because lst will change as the function runs. You should use an
appropriate loop to account for this - see the 'Looping with Mutation' portion of the
course slides!



#3 - recursiveStringToList(lst) - 15pts
Can attempt after Recursion lecture

Write a function recursiveStringToList(s) that takes a string as input and returns a
list which contains all the characters that were in s, but as separate items in the list.
This function must use recursion in a meaningful way; a solution that uses a loop or the
built-in split function will receive no points, and the function should not call list().

For example, recursiveStringToList("hello") should return ["h", "e", "l",

"l", "o"].

Hint: start from the framework in the Recursion slides! What's your base case, and how
do you make the problem smaller? What should the function return, and how can you
combine it with the leftover part?

Another Hint: make sure to keep your types straight! The parameter should always be
a string, and the returned value should always be a list.


	Name: 
	AndrewID: 
	Write what is printed to the terminalprinta: 
	Write what is printed to the terminalprintb: 
	Write what is printed to the terminalprintc: 
	Write what is printed to the terminalprintd: 
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	What condition do you need to check for your base case: 
	What do you return in the base case: 
	What is the recursive call on a smaller problem in the recursive case: 
	What do you return in the recursive case: 
	Text1: 
	Text2: 
	Text3: 
	Text4: 
	Text5: 
	Text6: 
	Text7: 
	Text8: 
	Text9: 
	Text10: 
	Text11: 
	Text12: 


