
1

UNIT	9A	
Randomness	in	Computa5on:	
Random	Number	Generators	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 1

Randomness	in	Compu5ng	

•  Determinism	--	in	all	algorithms	and	programs	we	
have	seen	so	far,		given	an	input	and	a	sequence	of	
steps,	we	get	a	unique	answer.	The	result	is	
predictable.	

•  However,	some	computa5ons	need	steps	that	have	
unpredictable	outcomes		
–  Games,	cryptography,	modeling	and	simula5on,	selec5ng	samples	

from	large	data	sets	

•  We	use	the	word	“randomness”	for	unpredictability,	
having	no	paIern	

2 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

2

Defining	Randomness	

	
•  Philosophical	ques5on		

• Are	there	any	events	that	are	really	
random?		

3 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Obtaining	Random	Sequences	

•  Defini5on	we	adopt:	A	sequence	is	random	if,	
for	any	value	in	the	sequence,	the	next	value	
in	the	sequence	is	totally	independent	of	the	
current	value.	

•  If	we	need	random	values	in	a	computa5on,	
how	can	we	obtain	them?	

	

4 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

3

Obtaining	Random	Sequences	
•  Pre-computed		random	sequences.	For	example,	A	Million	

Random	Digits	with	100,00	Normal	Deviates	(1955):	A	400	
page	reference	book	by	the	RAND	corpora5on	
–  2500	random	digits	on	each	page	
–  Generated	from	random	electronic	pulses		

•  True	Random	Number	Generators	(TRNG)	
–  Extract	randomness	from	physical	phenomena	such	as	
atmospheric	noise,	5mes	for	radioac5ve	decay	

•  Pseudo-random	Number	Generators	(PRNG)	
–  Use	a	formula	to	generate	numbers	in	a	determinis5c	way	
but	the	numbers	appear	to	be	random	

	
	 5 15110 Principles of Computing,

Carnegie Mellon University - CORTINA

Random	numbers	in	Python	
•  To	generate	random	numbers	in	Python,	we	can	use	the	
randint	func5on	from	the	random	module.	

•  The	randint(a,b) returns	an	integer	n	such	that		
																																															a	≤	n	≤	b.	
>>> import random!
>>> random.randint(0,15110)!
12838!
>>> random.randint(0,15110)!
5920!
>>> random.randint(0,15110)!
12723!

6 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

CAUTION:
This function
includes both
endpoints!
It is not like
the range
function!

4

Is	randint	truly	random?	

•  The	func5on	randint	uses	some	algorithm	
to	determine	the	next	integer	to	return.	

•  If	we	knew	what	the	algorithm	was,	then	the	
numbers	generated	would	not	be	truly	
random.	

•  We	call	randint	a	pseudo-random	number	
generator	(PRNG)	since	it	generates	numbers	
that	appear	random	but	are	not	truly	random.	

7 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Crea5ng	a	PRNG	

•  Consider	a	pseudo-random	number	generator	
prng1	that	takes	an	argument	specifying	the	length	
of	a	random	number	sequence	and	returns	a	list	with	
that	many	“random”	numbers.	
>>> prng1(9)  
[0, 7, 2, 9, 4, 11, 6, 1, 8]!

•  Does	this	sequence	look	random	to	you?	

8 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

5

Crea5ng	a	PRNG	

•  Let’s	run	prng1	again:	
>>> prng1(15)!

 [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,  
 10, 5, 0, 7, 2]!

•  Now	does	this	sequence	look	random	to	you?	
•  What	do	you	think	the	16th	number	in	the	
sequence	is?	

9 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Looking	at	prng1
def prng1(n):!
!seq = [0] ! !# seed (starting value)!
!for i in range(1, n):!
! !seq.append((seq[-1] + 7) % 12)!
!return seq!

>>> prng1(15)!
[0, 7, 2, 9, 4, 11, 6, 1, 8, 3,  
 10, 5, 0, 7, 2]!

10 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

6

Another	PRNG
def prng2(n):!
!seq = [0] ! !# seed (starting value)!
!for i in range(1, n):!
! !seq.append((seq[-1] + 8) % 12)!
!return seq!

>>> prng2(15)!
[0, 8, 4, 0, 8, 4, 0, 8, 4, 0, !
 8, 4, 0, 8, 4]!

•  Does	this	sequence	appear	random	to	you?	
	
!

11 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

PRNG	Period	
•  Let’s	define	the	PRNG	period	as	the	number	of	
values	in	a	pseudo-random	number	generator	
sequence	before	the	sequence	repeats.	

 [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,  
 10, 5, 0, 7, 2]  
period	=	12

[0, 8, 4, 0, 8, 4, 0, 8, 4, 0,  
 8, 4, 0, 8, 4]  
period	=	3										

12

next	number	=		(last	number	+	7)	mod	12	

next	number	=		(last	number	+	8)	mod	12	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

7

Linear	Congruen5al	Generator	(LCG)	
•  A	more	general	version	of	the	PRNG	used	in	these	examples	is	

called	a	linear	congruen5al	generator.	
•  Given	the	current	value	xi	of	PRNG	using	the	linear	

congruen5al	generator	method,	we	can	compute	the	next	
value	in	the	sequence,	xi+1,	using	the	formula	
	xi+1	=	(a	xi	+	c)	modulo	m		where	a,	c,	and	m	are	pre-
determined	constants.	

– prng1: 	 	a	=	1,	c	=	7,	m	=	12	
– prng2: 	 	a	=	1,	c	=	8,	m	=	12	

13 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

There are rules on choosing values for a, c, and m to guarantee
a maximum period for the random number generator.

LCMs	in	the	Real	World	

•  glibc	(used	by	the	c	compiler	gcc):	
a	=1103515245,	c	=	12345,	m	=	232	

•  Numerical	Recipes	(popular	book	on	numerical	
methods	and	analysis):	
a	=	1664525,	c=	1013904223,	m	=	232	

•  Random	class	in	Java:	
a	=	25214903917,	c	=	11,	m	=	248		

14 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

8

Python’s	random	module	

•  Python	uses	the	Mersenne	Twister	as	the	core	
generator.	It	produces	53-bit	precision	floats	
and	has	a	period	of	219937-1.	

	
•  Almost	all	module	func5ons	depend	on	the	
basic	func5on	random(),	which	generates	a	
random	float	uniformly	in	the	semi-open	
range	[0.0,	1.0).																Source:	hIp://docs.python.org	

15 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Some	addi5onal	Python	func5ons	from	the		
random	module	

>>> import random!
 
>>> random.random() !!
0.9607807406878415!
 
>>> random.uniform(1,10)!
5.4645226971373555!

16 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

random	float		
0.0	≤	x	<	1.0	

random	float	
1.0	≤	x	<	10.0	
	

9

Some	Python	func5ons	from	the		
random	module	(cont'd)	

>>> import random  
 
>>> random.randrange(10) !!
7!
 
 
>>> random.randrange(0,101,2)!
42!

17 15110 Principles of Computing,

Carnegie Mellon University - CORTINA

random	int		
0	≤	x	<	10	

random	even	int	
0	≤	x	<	101	

Some	Python	func5ons	from	the		
random	module	(cont'd)	

>>> import random
>>> random.choice("abcdefghij")
'c'
>>> items = [1,2,3,4,5,6]
>>> random.shuffle(items)
[3, 2, 5, 6, 4, 1]

>>> random.sample(items, 3)
[4, 1, 5]

18 15110 Principles of Computing,
Carnegie Mellon University - CORTINA

random	char	
from	string	

randomly	
shuffled	list	

list	of	random	
samples	
without	
replacement	

