
15-110 Check3 - Written Portion

Name:

AndrewID:

#1 - Tracing Lists - 10pts

Trace the code below, then fill in the table with what it prints (one row per line).
You might not need to use all of the rows.

#2 - Aliasing and Mutability - 15pts

The following code creates and modifies lists. Determine each list’s values after the
code has run.

Variable List Values

a

b

c

d

Select all of the pairs of lists that are ​aliased ​at the end of the code.

☐ a ​ and ​b
☐ a ​ and ​c
☐ a ​ and ​d
☐ b ​ and ​c
☐ b ​ and ​d
☐ c ​ and ​d
☐ None of the lists are aliased

#3 - Base Cases and Recursive Cases - 15pts

Assume you want to write a function that takes a positive integer, ​n​, and ​recursively
computes the sum from one to ​n​.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your ​base case ​?

What do you return in the ​base case​?

What is the recursive call on a smaller problem in the ​recursive case​?

How do you use the recursive call's result to solve the whole problem for ​n​ in the
recursive case​?

15-110 Check3 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Check3 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function ​testAll​()​ to run test cases on all programs.

#1 - ​interleave(lst1, lst2) ​- 15pts

Write a non-destructive function ​interleave ​(​lst1, lst2 ​)​ which takes two lists and
returns a ​new ​list that contains the elements of the two lists, interleaved in the order
they originally appeared. You may assume the lists will be the same length.

For example, ​interleave​([​"a", "b", "c"​] ​, ​[​1, 2, 3​]) ​ would produce
[​"a", 1, "b", 2, "c", 3​] ​.

#2 - ​onlyOdds(lst)​ - 15pts

Write a ​non-destructive ​function ​onlyOdds​(​lst ​)​ that takes a list and returns a ​new ​list
containing only the odd-indexed elements of ​lst ​. Note that this should not return the
odd numbers- it should return the odd ​indexes ​!

For example, ​onlyOdds​([​1, 2, 3, 4, 5, 6​])​ returns ​[​2, 4, 6​] ​, and
onlyOdds​([​"a", "b", "c", 1, 2, 3, 4, 4.5, 5 ​])​ returns ​[​"b", 1, 3, 4.5​] ​.

#3 - ​removeEvens(lst)​ - 15pts

Write a ​destructive ​function ​removeEvens​(​lst ​)​ that destructively removes the
even-indexed items of the provided list, so that it contains only the original odd-indexed
items at the end of the function. This function should not return anything; we'll instead
test it by checking whether the input list was modified properly.

For example, ​removeEvens​([​1, 2, 3, 4, 5, 6​])​ modifies the list to be ​[​2, 4, 6​] ​,
while ​removeEvens ​([​"a", "b", "c", 1, 2, 3, 4, 4.5, 4 ​])​ modifies the list to be
[​"b", 1, 3, 4.5​] ​.

Hint ​: this is tricky because ​lst ​ will change as the function runs. You should use an
appropriate loop to account for this. Also, make sure to check for aliasing issues.

#4 - ​recursiveReverse(lst)​ - 15pts

Write a function ​recursiveReverse ​(​lst ​)​ that takes a list as input and returns a ​new
list which has the same elements, but in reverse order. This function must use
recursion ​in a meaningful way; a solution that uses a loop, built-in reverse functions, or
a slice with a negative step will receive no points.

For example, ​recursiveReverse​([​1, 2, 3​]) ​ should return ​[​3, 2, 1​] ​.

	List Valuesa:
	List Valuesb:
	List Valuesc:
	List Valuesd:
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	What condition do you need to check for your base case:
	What do you return in the base case:
	What is the recursive call on a smaller problem in the recursive case:
	recursive case:
	Text1:
	Text2:
	Text3:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:
	Text10:
	Text11:
	Text12:
	Text13:
	Text14:

