
15-110 Hw3 - Written Portion

Name:

AndrewID:

#1 - 2D Lists - 8pts

Fill in the following table with the values in the 2D list returned by mysteryFunction.
Write an X in the squares that are outside the bounds of the list.

#2 - Recursion Tracing - 5pts

Trace the following code, then fill out the table below to indicate all the recursive
function calls that are made, and which value is returned by each function call. You
may not need all of the rows.

Note: in the second column, make sure to indicate the actual returned value, not a
function call!

Function Call Returned Value

gcd (20, 12)

#3 - Tracing Towers of Hanoi - 8pts

Recall the algorithm we discussed in class to solve the Towers of Hanoi problem. Use
that algorithm to fill out all the steps needed to move three discs from Peg A to Peg C in
the table below. You might not need to use all the rows.

The three discs are called 1, 2, 3 (where 1 is the smallest and the disc on top). So the
algorithm starts with the discs 1, 2, 3 on Peg A, and should end with 1, 2, 3 on Peg C.
We've done the first step for you.

 Peg A Peg B Peg C

Start 1, 2, 3

Step 1 2, 3 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

How many steps would it take to move 4 discs instead of 3?

#4 - Binary Search - 12pts

In the following table, write out the recursive calls that our implementation of
binarySearch would make while searching the given list for the given item. Make sure
to write out the function call , not the result. You might not need to use all the rows.

Q1: Search for 5

Original Call binarySearch ([3, 5, 6, 7, 9, 11, 11, 15, 15, 19], 5)

Recursive Call 1

Recursive Call 2

Recursive Call 3

Recursive Call 4

Recursive Call 5

Q2: Search for 14

Original Call binarySearch ([3, 5, 6, 7, 9, 11, 11, 15, 15, 19], 14)

Recursive Call 1

Recursive Call 2

Recursive Call 3

Recursive Call 4

Recursive Call 5

#5 - Best Case and Worst Case - 12pts

For each of the following functions, give an example of an input that would result in
best-case efficiency, then an example of an input that would result in worst-case
efficiency . This example can either be a specific input, or a general description of an
input.

def getEmail(words):
 # words is a list
 for token in words:
 if "@" in token:
 return token
 return "No email found"

def isPrime(num):
 for factor in range(2, num):
 if num % factor == 0:
 return False
 return True

What is a best case input for getEmail ?

What is a worst case input for getEmail?

What is a best case input for isPrime ?

What is a worst case input for isPrime?

#6 - Calculating Big-O Families - 15pts

For each of the following functions, check the Big-O function family that function
belongs to. You should determine the function family by considering how the number of
steps the algorithm takes grows as the size of the input grows.

def countEven(L): # n = len(L)
 result = 0
 for i in range(len(L)):
 if L[i] % 2 == 0:
 result = result + 1
 return result

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

n = len(L)

def sumFirstTwo(L):
 if len(L) < 2:
 return 0
 return L[0] + L[1]

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

n = len(L1) = len(L2)

def linearSearchAll(L1, L2):
 count = 0
 for item in L1:
 # Hint: what's the complexity of
 # linear search?

 if linearSearch(L2, item) == True:
 count = count + 1
 return count

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

n = len(L1) = len(L2)

def binarySearchAll(L1, L2):
 count = 0
 for item in L1:
 # Hint: what's the complexity of
 # binary search?

 if binarySearch(L2, item) == True:
 count = count + 1
 return count

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

#Hint:consider the # of recursive calls

def recursiveSum(L): # n = len(L)
 if len(L) == 0:
 return 0
 else:
 return L[0] + recursiveSum(L[1:])

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

#7 - Tracing Sorting Algorithms - 15pts

For the two tables below, each row represents a 'pass' - a single iteration of the outer
loop in the function. Fill in the number of comparisons and swaps that happen in each
pass, and the state of the list at the end of that pass, for the specified sort function as
implemented in class.

Selection Sort

Pass # Comparisons Swaps List State

Start - - [3, 5, 1, 2, 4]

1

2

3

4

Insertion Sort

Pass # Comparisons Swaps List State

Start - - [3, 5, 1, 2, 4]

1

2

3

4

Merge Sort:
How many times is the function
mergeSort called when we run
mergeSort ([3, 5, 1, 2, 4]) ?

15-110 Hw3 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Hw3 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - hiddenMessage(s) - 5pts

Write a function hiddenMessage (s) which takes a string, splits it by spaces, and
returns a new string that is composed of the n-th letters of the n-th words. You may
assume that the string only contains letters and spaces.

For example, hiddenMessage ("I'm here") returns "Ie", and
hiddenMessage("Come to office hours") returns "Cofr" .

#2 - letterFrequency(s) - 5pts

Write a function letterFrequency (s) which takes a string and returns a list of 26
elements, where each element is the number of times that the corresponding letter of
the alphabet occurs in the string. The 0th index corresponds to "a", the 1st corresponds
to "b", etc., until the 25th element corresponds to "z".

For example, letterFrequency ("Hello World") should return:
[0,0,0,1,1,0,0,1,0,0,0,3,0,0,2,0,0,1,0,0,0,0,1,0,0,0].

Note: you can ignore any non-letter characters that occur in the string, but you should
make sure both upper- and lower-case letters are counted as the same.

Hint: the easiest way to get an index based on a letter is to use the ord (c) method,
which takes a one-character string as input and returns the ASCII value of that
character. Offset this number by ord("a") or ord ("A") to get the index you need.

#3 - onlyPositive(lst) - 5pts

Write a function onlyPositive(lst) that takes as input a 2D list and returns a new 1D
list that contains only the positive elements of the original list, in the order they originally
occurred. You may assume the list only has numbers in it.

Example: onlyPositive([[1, 2, 3] , [4, 5, 6]]) returns [1, 2, 3, 4, 5, 6],
onlyPositive ([[0, 1, 2] , [-2, -1, 0], [10, 9, -9]] returns [1, 2, 10, 9],
and onlyPositive([[-4, -3] , [-2, -1]]) returns [].

#4 - recursiveMax(lst) - 5pts

Write a function recursiveMax(lst) that takes a list as input and returns the maximum
value in the list. You may assume the list contains at least one element. This function
must use recursion in a meaningful way; a solution that uses a loop or built-in max
functions will receive no points.

For example, recursiveMax([1, 2, 3]) returns 3, and
recursiveMax ([2, 4, 6, 9, 10, 2, 6]) returns 10.

#5 - recursiveCount(lst, item) - 5pts

Write a function recursiveCount (lst, item) that takes a list and a value as input
and returns a count of the number of times that item occurs in the list. This function
must use recursion in a meaningful way; a solution that uses a loop or built-in count
functions will receive no points.

For example, recursiveCount ([2, 4, 6, 8, 10] , 6) returns 1,
recursiveCount([4, 4, 8, 4], 4) returns 3, and
recursiveCount([1, 2, 3, 4], 5) returns 0.

	Returned Valuegcd20 12:
	gcd20 12Row1:
	Returned ValueRow2:
	gcd20 12Row2:
	Returned ValueRow3:
	gcd20 12Row3:
	Returned ValueRow4:
	gcd20 12Row4:
	Returned ValueRow5:
	2 3Step 2:
	Peg BStep 2:
	1Step 2:
	2 3Step 3:
	Peg BStep 3:
	1Step 3:
	2 3Step 4:
	Peg BStep 4:
	1Step 4:
	2 3Step 5:
	Peg BStep 5:
	1Step 5:
	2 3Step 6:
	Peg BStep 6:
	1Step 6:
	2 3Step 7:
	Peg BStep 7:
	1Step 7:
	2 3Step 8:
	Peg BStep 8:
	1Step 8:
	2 3Step 9:
	Peg BStep 9:
	1Step 9:
	2 3Step 10:
	Peg BStep 10:
	1Step 10:
	2 3Step 11:
	Peg BStep 11:
	1Step 11:
	How many steps would it take to move 4 discs instead of 3:
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 1:
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 2:
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 3:
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 4:
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 5:
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 1:
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 2:
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 3:
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 4:
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 5:
	What is a best case input for getEmail:
	What is a worst case input for getEmail:
	What is a best case input for isPrime:
	What is a worst case input for isPrime:
	1:
	1_2:
	 3 5 1 2 4 1:
	2:
	2_2:
	 3 5 1 2 4 2:
	3:
	3_2:
	 3 5 1 2 4 3:
	4:
	4_2:
	 3 5 1 2 4 4:
	1_3:
	1_4:
	 3 5 1 2 4 1_2:
	2_3:
	2_4:
	 3 5 1 2 4 2_2:
	3_3:
	3_4:
	 3 5 1 2 4 3_2:
	4_3:
	4_4:
	 3 5 1 2 4 4_2:
	undefined:
	Text11:
	Text12:
	Text13:
	Text14:
	Text15:
	Text16:
	Text17:
	Text18:
	Text19:
	Text20:
	Text21:
	Text22:
	Text23:
	Text24:
	Text25:
	Text26:
	Text27:
	Text28:
	Text29:
	Text30:
	Text31:
	Text32:
	Text33:
	Text34:
	Text35:
	Text36:
	Text37:
	Text38:
	Text39:
	Text40:
	Text41:
	Text42:
	Text43:
	Text44:
	Text45:
	Text46:
	Text47:
	Text48:
	Text49:
	Text50:
	Text51:
	Text52:
	Text53:
	Text54:
	Text55:
	Text56:
	Text57:
	Text58:
	Text59:
	Text60:
	Text61:
	Check Box62: Off
	Check Box63: Off
	Check Box64: Off
	Check Box65: Off
	Check Box66: Off
	Check Box67: Off
	Check Box68: Off
	Check Box69: Off
	Check Box70: Off
	Check Box71: Off
	Check Box72: Off
	Check Box73: Off
	Check Box74: Off
	Check Box75: Off
	Check Box76: Off
	Check Box77: Off
	Check Box78: Off
	Check Box79: Off
	Check Box80: Off
	Check Box81: Off
	Check Box82: Off
	Check Box83: Off
	Check Box84: Off
	Check Box85: Off
	Check Box86: Off

