
15-110 Hw6 - Battleship

Hw6 and its checks are organized differently from the other assignments. If you haven't
already done so, you should read the ​Hw6 General Guide​ to understand how this
assignment works.

Project Description

In this project, you will use the class simulation framework to program an interactive
game of Battleship. If you've never played Battleship before, try an example game here:
https://www.mathsisfun.com/games/battleship.html

In the first week, you will automatically set up ships on the enemy's board. In the second
week, you will implement setup for the user by letting them click on squares to set ships.
In the third week, you will implement the core gameplay, where the user clicks on the
enemy's board to guess ships, and the enemy automatically guesses where ships are
on the user's board.

Click on the following links to read the instructions for each week's assignment:

Check6-1 - due Wednesday 4/15 at noon EDT

Check6-2 - due Wednesday 4/22 at noon EDT

Hw6 - due Wednesday 4/29 at noon EDT

https://www.mathsisfun.com/games/battleship.html

Check6-1 - due Wednesday 4/15 at noon EDT

This week we will begin to create the framework behind the game by having the enemy
player set ships in random positions on their board. To do this, you'll write functions that
create an empty grid, create random ships, add random ships to the grid, and finally
draw the grid.

Step 0: ​Written Assignment ​[45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: ​Generate an Empty Grid ​[5pts]

Write a function ​emptyGrid(rows, cols)​ which creates a new 2D list (called a grid)
with ​rows​ number of rows and ​cols​ number of columns. The value of each
grid[row][col]​ should be ​1​, which stands for an empty spot that has not been
clicked. Return the new 2D list.

Note that we'll use a number system to represent all cells that can show up in the grid.
This number system has been provided as global variables at the top of the file.
Specifically:

EMPTY_UNCLICKED = 1

SHIP_UNCLICKED = 2

EMPTY_CLICKED = 3

SHIP_CLICKED = 4

To test this function, run ​testEmptyGrid()​.

Step 2: ​Create Ships ​[10pts]

Write a function ​createShip()​ which chooses a random row in the range [1,8] and a
random column in the same range to be the center point of a ship. We choose 1-8 so
that it cannot put a ship in the last row or column, which potentially wouldn't fit on the
board.

After choosing a row and column as the center, your code should choose a random
number 0 or 1 to decide if the ship will be vertical or horizontal. If it chose vertical,
create a ship within the same column where the ends are one above and one below the
chosen center - e.g., row-1, row, row+1. Similarly, if it chose horizontal, create a ship in
the same row, where the ends are one column left and right of center - e.g., col-1, col,
col+1.

Each ship will be a list of 3 coordinates (two-element lists). Return the ship (2D list)
created.

To test this function, run ​testCreateShip()​.

Step 3: ​Validate Ships ​[10pts]

We'll need to check if randomly-generated ships can actually be added to the grid. Write
a function ​checkShip(grid, ship)​ that iterates through the given ship and checks if
each coordinate in the ship is 'clear'. A coordinate is clear if the corresponding location
on the given grid is empty (​EMPTY_UNCLICKED​). It should return a list of not-clear
coordinates, or an empty list if all coordinates are clear.

To test this function, run ​testCheckShip()​.

Step 4: ​Add Ships to Board ​[15pts]

Write a function ​addShips(grid, numShips)​ which loops until it has added ​numShips
ships to the grid. For each time through the loop, it should create a ship using
createShip()​, then ​checkShip​ for that ship on the given grid. If the returned not-clear
list is empty, then the ship can be placed.

To place the ship, iterate through each coordinate of the ship, and set the grid at that
coordinate to 2 (​SHIP_UNCLICKED​), then add 1 to the current count of ships. The
function should return the grid that has ​numShips​ ships added to it.

To test this function, run ​testAddShips()​. Note that this function involves randomness,
so it may pass on one run and fail on another. If it fails, then something is wrong with
the function that needs to be fixed.

Step 5: ​Store Initial Data ​[5pts]

Now that we can make the grid, we need to set up the simulation itself!

You'll need to update ​makeModel(data)​ to set up several variables. These variables
will be a part of data, so make sure to define them as ​data["name"] = value​.

First, store data about the board dimensions. You should store the number of rows,
number of cols, board size, and cell size. You can start with 10 rows, 10 cols, and a
500px board size. You can then compute the cell size based on the board size and
number of rows/cols.

Next, store data about the board. You'll need to keep track of two boards- one for the
computer, and one for the user. You should store the number of ships on the board
(start with 5), then set both the computer board and the user board to be a new empty
grid by calling your ​emptyGrid()​ function. Finally, update your computer board by
calling your ​addShips()​ function.

Step 6: ​Draw the Grid ​[10pts]

Now we just need to add graphics. Write ​drawGrid(data, canvas, grid,
showShips)​, which draws a grid of ​rows​ x ​cols​ squares on the given canvas. Each
square should have the cell size you determined in the previous step. If the cell in the
given grid at a coordinate is ​SHIP_UNCLICKED​, the square should be filled yellow;
otherwise, it should be filled blue. Ignore the ​showShips​ parameter for now; it will be
used in a future step.

Hint: ​recall the example problem from the Graphics color that we used to draw a grid of
circles. You can use a very similar algorithm here…

Now update ​makeView(data, userCanvas, compCanvas)​ so that it calls ​drawGrid()
on the computer's board and canvas. You can use ​False​ for the ​showShips​ variable for
now. Once this is done, when you run the simulation, you should see the computer's
starter board in the computer window!

To test your ​drawGrid()​ function, temporarily set your user grid equal to ​testGrid()
instead of an empty grid. This will set up an example grid from the test functions. Your
user board should then look like this:

Once you've verified that the function works, set the user grid back to an empty grid
again.

At the end of Check6-1, you should pass all of the Check6-1 test cases, and you should
produce a computer board that looks something like this (with ships placed randomly):

Check6-2 - due Wednesday 4/22 at noon EDT

In the second stage of the project, you will write code that lets the user select where to
place ships on their grid. To do this, you will write functions that detect which cell has
been clicked, create temporary ships, draw temporary ships, check ship validity, and
place temporary ships on the user's board.

Step 0: ​Written Assignment ​[45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: ​Check Direction ​[10pts]

First, write two functions to check whether a set of three coordinates are laid in a
specific direction (vertical or horizontal). Write ​isVertical(ship)​, which takes in a
ship and returns ​True​ if the ship is placed vertically, or ​False​ otherwise. Recall from
last week that a ship is a 2D list of coordinates. A ship is ​vertical ​if its coordinates all
share the same column, and are each 1 row away from the next part.

Then write ​isHorizontal(ship)​, which takes in a ship and returns ​True​ if the ship is
placed horizontally, and ​False​ otherwise. This should work in a similar manner to
isVertical​, except that the dimensions are flipped.

To test your functions, run ​testIsVertical()​ and ​testIsHorizontal()​. Make sure
to uncomment the ​week2Tests()​ call in order to run these!

Step 2: ​Detect Clicked Cells ​[10pts]

Next, we need to handle mouse events, to detect where a user has clicked on the
board. Write the function ​getClickedCell(data, event)​ which takes the simulation's
data dictionary and a mouse event, and returns a two-element list holding the row and
col of the cell that was clicked.

Recall that the event value holds ​event.x​ and ​event.y​; you need to convert these to
the row and col. How can you do this? You have two choices- either derive the row and
col mathematically, or iterate over every possible row and col in the board, calculate

each (row, col) cell's left, top, right, and bottom bounds, and check if the (x,y) coordinate
falls within those.

To test your function, run ​testGetClickedCell()​. You'll be able to test this manually
as well after a few more steps.

Step 3: ​Update the Graphics ​[10pts]

Now we'll start to write code that lets the user add ships to the board by showing
'temporary' ships as the user clicks on cells. These temporary ships will be 'placed' on
the board once the user has clicked three cells.

First, we need to represent the temporary ship in the model. It will take the same ship
format we've used before- a 2D list. Add a variable for the temporary ship to the data
dictionary in ​makeModel​, starting the ship as empty.

We'll need to display the temporary ship on the board. Write ​drawShip(data, canvas,
ship)​, which takes the data model, a canvas, and a ship 2D list, and draws white cells
for each component of the given ship. This can use very similar logic to your code for
drawGrid()​, except that you'll only draw cells that exist in the ship value.

While you're working on graphics, let's update the ​makeView​ function at the top of the
file in preparation for the next step. You've already told it to draw the computer board;
now tell it to draw the user board and the temporary ship. Call ​drawGrid()​ on the user's
board and canvas (setting ​showShips​ to ​True​), then call ​drawShip()​ on the temporary
ship in ​data​. Note that the temporary ship should be drawn on the ​user's ​board.

To test your ​drawShip()​ function, temporarily set your temporary ship equal to
testShip()​ instead of an empty ship. This will set up an example ship from the test
functions. Your user board should then look like this:

Once you've verified that the ​drawShip()​ function works, change the temporary ship
back to an empty ship again.

Step 4: ​Handle User Clicks ​[20pts]

Now we can write a function that will actually handle user clicks and let the user add
ships to the board. This will be complicated, so we'll break the process down into three
functions: ​shipIsValid(grid, ship)​, ​placeShip(data)​, and
clickUserBoard(data, row, col)​.

First, implement the function ​shipIsValid(grid, ship)​, which takes a grid and a
ship, and determines whether it is legal to place the ship on that grid. Ships should only
be added if they A) contain exactly three cells, B) do not overlap any already-placed
ships, and C) cover three ​connected ​cells (either vertically or horizontally). You can
check this by calling ​checkShip()​, ​isVertical()​, and ​isHorizontal()​.

To test this function, run ​testShipIsValid()​.

Next, implement the function ​placeShip(data)​. This takes the data model and checks
if the current temporary ship is valid (based on the function you wrote above). If the ship
is valid, 'place' it on the user's board by updating the board at each cell to hold the value
2 (​SHIP_UNCLICKED​). If it is not valid, print an error message to the interpreter. Either
way, you should reset the temporary ship to be an empty ship (so the user can try
again).

Finally, implement the function ​clickUserBoard(data, row, col)​, which handles a
click event on a specific cell.

First, check if the clicked location is already in the temporary ship list; if it is, exit the
function early by returning. This will keep the user from adding multiple cells in the same
location.

Assuming the clicked cell is not in the temporary ship, add it to the temporary ship in the
model.

If the temporary ship contains three cells, call ​placeShip(data)​ to attempt to add it to
the board. Otherwise, do nothing.

As a last step, we need to keep track of how many ships the user has added so far. Add
one more variable to ​data​ in ​makeModel​ to track the number of user ships; it should
start as ​0​. Then, in ​placeShip()​, add one to that variable if a ship is added.

At the end of the function, check if the user has added 5 ships, and tell them to start
playing the game if so. And at the beginning of the function, exit immediately if 5 ships
have already been added, to keep the user from adding too many ships.

We can't test ​placeShip​ or ​clickUserBoard​ automatically, but you'll be able to test
them interactively after completing the next step.

Step 5: ​Manage Mouse Events ​[5pts]

Now we can put everything together by capturing and handling mouse events. In the
mousePressed(data, event, board)​ function at the top of the file, use your
getClickedCell()​ function to determine the row and col of the cell that was clicked.
Next, note that we've added an additional parameter to the ​mousePressed()​ function.
This parameter, ​board​, is ​"user"​ if the click happened on the user's board, or ​"comp"​ if
the click happened on the computer's board. If it is ​"user"​, call ​clickUserBoard()
with the row and col to update the temporary ship and board.

Once this step is complete, you can test your code by interacting with your simulation.
Try clicking on different cells and making temporary ships. Make sure that the validity
checking works, and that ships are added to the board properly. If you run into errors,
try printing out what each helper function returns, to determine where the error is
occurring across all your functions.

At the end of Check6-2, you should pass all of the Check6-2 test cases, and you should
be able to place user ships on the board appropriately. You can watch the following
video for an example of the legality checks the placed ships should pass:

https://www.cs.cmu.edu/~110/hw/hw6_battleship_check2_demo.mp4

https://www.cs.cmu.edu/~110/hw/hw6_battleship_check2_demo.mp4

Hw6 - due Wednesday 4/29 at noon EDT

In the final stage, you will implement the actual gameplay of Battleship, so that the user
can guess which cells on the enemy board contain ships and the enemy can make
random guesses on the user board.

To do this, you will need to ​update ​many of the functions you have already written, to
add new functionality. You will also write functions that update the boards, choose
random guesses for the computer, and detect when the game is over.

Step 0-A: ​Complete Check6-1 ​[20pts]

If you got a perfect score on Check6-1 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-1 and use it to update
your Check6-1 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working.

Step 0-B: ​Complete Check6-2 ​[20pts]

If you got a perfect score on Check6-2 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-2 and use it to update
your Check6-2 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working.

Step 1: ​Handle User Guesses ​[20pts]

First, we need to update the simulation code to let the user guess where ships are on
the computer's board. This will involve checking the spot that was clicked, updating it as
appropriate, and drawing clicked cells on the grid.

First, write the function ​updateBoard(data, board, row, col, player)​, which
updates the given board at (​row​, ​col​) based on a player's click. If the user clicks on a
cell with value ​SHIP_UNCLICKED​ (​2​), the board should update that cell to instead be

SHIP_CLICKED​ (​4​). Otherwise, if the user clicks on a cell with value ​EMPTY_UNCLICKED
(​1​), it should update to be ​EMPTY_CLICKED​ (​3​).

Next, write the function ​runGameTurn(data, row, col)​, which manages a single turn
of the game after a user clicks on (​row​, ​col​). First, check whether (​row​, ​col​) has
already been clicked on the computer's board (ie, if it is ​SHIP_CLICKED​ or
EMPTY_CLICKED​); if it has, return early so that the user can click again. If the cell has not
been clicked before, call ​updateBoard()​ with the appropriate parameters (including
"user"​ as the player) to update the board at that spot.

Now we need to update the simulation code. In ​mousePressed​, if the computer's board
has been clicked and all the user's ships have been placed (ie, gameplay has started),
call ​runGameTurn​ on the clicked cell.

Finally, update ​drawGrid​ to account for our two new types of cells. ​SHIP_CLICKED​ cells
should be drawn as red, and ​EMPTY_CLICKED​ cells should be drawn as white. We'll also
finally use the parameter ​showShips​ to make the game more interesting. Battleship is
too easy if you can see your opponent's ships, so if ​showShips​ is ​False​, draw
SHIP_UNCLICKED​ cells as blue (to hide them). If you correctly set the ​drawGrid​ calls in
makeView​ so that ​showShips​ has different values in the two calls, this should draw the
two boards properly (with the computer ships hidden and the user ships showing up).

To test your code, run the simulation, place the user's ships, then try clicking on cells in
the computer's board. They should be changed to red or white.

Step 2: ​Handle Computer Guesses ​[10pts]

For every guess the user makes, we want the computer to make a guess as well. Write
the function ​getComputerGuess(data)​. This function should return a cell that the
computer will 'click' on the user's board. We'll have the computer select cells completely
randomly; use the ​random.randint()​ function to pick the row and col.

To make sure that the computer doesn't click the same cell twice, use a while loop to
keep picking new (row, col) pairs until you find one that hasn't been clicked in the user
board yet. You'll need to check the current value in the user's board to tell if this is true.

Now update the ​runGameTurn​ function. After the user's guess is processed and added
to the computer's board, you should have the computer make a guess by calling

getComputerGuess()​. Then run ​updateBoard()​ to update the user board at that
location (with ​"comp"​ as the player).

To test your code, try running the simulation again. Set up the user's board, then click
on a cell on the computer board. A cell should automatically be picked on the user's
board as soon as you make your selection. Make sure to also test what happens if you
click on a cell you've clicked before- the computer should ​not​ make a move in that case.

Step 3: ​Detecting a Winner ​[15pts]

Finally, we want to determine ​when ​the game ends, and ​who ​wins. We'll need to add a
new variable to ​data​ in ​makeModel​ for this- something to keep track of the winner. It can
start as ​None​.

Write the function ​isGameOver(data, board)​, which checks whether the game is over
for the given board. The game is done if there are no ​SHIP_UNCLICKED​ cells left in the
board- in other words, when every ship has been clicked. Return ​True​ if the game is
over for that board, and ​False​ otherwise.

The best place to check whether the game is over is right after the board is updated. In
updateBoard()​, call ​isGameOver()​ on the ​board​ parameter. If the result is ​True​, set
the winner variable in ​data​ to the ​player​ parameter

Now update ​makeView()​ to draw a special message on the user's canvas for the end of
the game. If the winner is ​"user"​, draw a congratulations message. If the winner is
"comp"​, tell the user that they lost.

Finally, in ​mousePressed()​, only let the user click on cells when a winner hasn't been
chosen yet (when the data variable is ​None​).

To test your code, try to win the game! You might have to lose on purpose to test the
computer-winning scenario.

Step 4: ​Detecting a Draw ​[10pts]

It isn't very hard to beat a computer that makes guesses entirely randomly, so we'll add
one extra feature to the game- declaring a draw. We'll say that if half the board (50
cells) is clicked with no winner, the result is a draw instead.

Add two data variables in ​makeModel​- one that holds the max number of turns (​50​), and
one that holds the current number of turns (which starts at ​0​). Then, in ​runGameTurn​,
once both the user and the computer have made their moves, add one to the number of
turns made so far. In that same function, check whether the number of turns is equal to
the max number of turns. If it is, set the winner variable in data to ​"draw"​.

Then add one final message in ​makeView()​- if the winner is ​"draw"​, tell the user
they're out of moves and have reached a draw.

Make sure to test the simulation to see what it does if you reach the draw state
intentionally.

Step 5: ​Restarting the Game ​[5pts]

We'll add one last feature- letting the user play again. This will be done by detecting if
the user presses the Enter key after the game is over.

Add a message in ​makeView​ after each of the possible end-game messages that tells
the user to press Enter if they want to play again. Then, in ​keyPressed​, check if the
user pressed enter by using the ​event​ parameter. If they did, reset the game.

The easiest way to reset the game is to reset all the data variables. You can do this very
simply by calling ​makeModel(data)​ again.

Make sure to test this last feature by pressing Enter after you finish a game, to see if
you can play a new game. Once that's working, congratulations- you're done!

At the end of Hw6, you should be able to play a game of Battleship and win, lose, or tie
appropriately.

You can watch the following video for an example of working gameplay at the end of
Hw6:
https://www.cs.cmu.edu/~110/hw/hw6_battleship_final_demo.mp4

https://www.cs.cmu.edu/~110/hw/hw6_battleship_final_demo.mp4

