
Data Analysis –
Modeling and Parsing

15-110 – Wednesday 04/08

Learning Goals

• Read and write data from files

• Interpret data according to different protocols: plaintext, CSV, and
JSON

• Reformat data to add, remove, or reinterpret pre-existing data

2

Unit Overview

3

New Unit: CS as a Tool

Our next unit focuses on how computer science can be used to benefit
other domains.

We'll investigate three different applications of computer science: data
analysis, simulation, and machine learning.

These three applications share a core idea in common: all three
organize data to help people answer questions.

4

Schedule for Unit 5

The schedule for this unit will be staggered.

The first week (Wed 4/8-Mon 4/13) will focus on how the applications
organize data.

The second week (Wed 4/15-Mon 4/20) will focus on how the applications
find answers.

Each of these weeks will end with a short written assignment that covers
the main learning goals of the week. These assignments are part of Check6-1
and Check6-2.

5

Hw6 is a Guided Project

Hw6 is organized differently from the past assignments. In this
homework, you will spend three weeks building a code project that
uses computer science in some domain.

This project will be heavily guided, with lots of algorithmic instruction
in the writeup. It will also have two check-ins at Check6-1 and Check6-2
before the full project is due in Hw6.

Most importantly – you get to choose which project you complete!

6

Hw6 Project Options

Each of the five projects implements one of the three applications we'll teach in class.

Battleship is focused on building a game. It uses simulation.

Circuit Simulator is focused on implementing circuits. It uses simulation.

Language Modeling is focused on identifying patterns in text. It uses machine learning.

Protein Sequencing is focused on analyzing DNA data. It uses data analysis.

Tweet Analytics is focused on analyzing political Twitter data. It uses data analysis.

7

Hw6 Schedule

Here are the important deadlines for Hw6:

Sunday 4/12 noon – Fill out this form to select which project you plan to do:

https://forms.gle/NyBQJgbFpnzAz8Bz9

Wednesday 4/15 noon – Check6-1 is due (Hw6 check-in, and written assignment)

Wednesday 4/22 noon – Check6-2 is due (Hw6 check-in, and written assignment)

Wednesday 4/29 noon – Hw6 is due (full project, including work from both check-ins)

8

https://forms.gle/NyBQJgbFpnzAz8Bz9

Data Analysis

9

Data Analysis Gains Insights on Data

Data Analysis is the process of using computational or statistical
methods to gain insight about data.

Data Analysis is used widely by many organizations to answer questions
in many different domains. It plays a role everything from advertising
and fraud detection, to airplane routing and political campaigns.

Data Analysis is also used widely in logistics, to determine how many
people and how much stock is needed, and where they should go.

10

Data Analysis and COVID-19

Data Analysis is also being used in the current pandemic to find
answers to important questions, which may help save lives.

Data Analysis can determine how common different symptoms are, and
which symptoms occur together. It can be used to estimate the
infection rate of the disease, as well as the fatality rate.

Example: https://ourworldindata.org/coronavirus

11

https://ourworldindata.org/coronavirus

Data Analysis Process

The full process of data
analysis involves multiple
steps to acquire data,
prepare it, analyze it, and
make decisions based on
the results.

We'll focus mainly on three
steps: Data Cleaning,
Exploration & Visualization,
and Statistics & Analysis

12

Data
Collection

Data
Cleaning

Exploration
&

Visualization

Statistics
&

Analysis

Insight &
Decision
Making

Hypothesis
Generation

Presentation
&

Action

Data is Complicated

Before diving into data analysis, we have to ask a general question.
What does data look like?

Data varies greatly based on the context; every problem is unique.

Example: let's collect our own data! Fill out the following short survey:

bit.ly/110-ice-cream

13

bit.ly/110-ice-cream

Data is Messy

Let's look at the results of our ice cream
data.

Most likely, there are some irregularities in
the data. Some flavors are capitalized; others
aren't. Some flavors might have typos. Some
people who don't like ice cream might have
put 'n/a', or 'none', or 'I'm lactose intolerant'.
And some flavors might have multiple names
– 'green tea' vs. 'matcha'.

Data Cleaning is the process of taking raw
data and smoothing out all these differences.
It can be partially automated (all flavors are
automatically made lowercase), but usually
requires some level of human intervention.

14

Data Formats

15

Reading Data From Files

Once data has been cleaned, we need to access that data in a Python
program. That means we need to read data from a file.

Recall that all the files on your computer are organized in directories,
or folders. The file structure in your computer is a tree – directories are
the inner nodes (recursively nested), and files are the leaves.

When you're working with files, always make sure you know which
folder your file is located in. A sequence of folders from the top-level of
the computer to a specific file is called a filepath.

16

Opening Files in Python

To interact with a file in Python, we'll need to access its contents. We
can do this by using the built-in function open(filepath). This will
create a File object, which we can read from or write to.

f = open("sample.txt")

open() can either take a full filepath or a relative path from the
location of the python file. It's usually easier to put the file you want to
read/write in the same directory as the python file, so you can simply
refer to the filename directly.

17

Reading and Writing from Files

When we open a file, we need to specify whether we plan to read from or write to
the file. This will change the mode we use to open the file.

f = open("sample.txt", "r") # read mode
line = f.readline() # reads a single line of the file as a string
text = f.read() # reads the whole file as a string

f = open("sample2.txt", "w") # write mode
f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a
file once you're done with it.

f.close()

18

Be Careful When Programming With Files!

WARNING: when you write to files in Python, backups are not
preserved. If you overwrite a file, the previous contents are gone
forever. Be careful when writing to files.

WARNING: if you have multiple Python files open in Pyzo and you try
to open a file from a relative path, Pyzo might get confused. To be safe,
when working with files, only have one file open in Pyzo at a time. And
make sure to 'Run File as Script' when working with files.

19

Data has Many Different Formats

Once you've read data from a file, you need to determine what the
structure of that data is. That will inform how you store the data in
Python.

We'll discuss three formats here: CSV, JSON, and plaintext. Many other
formats exist; we'll introduce a few in a later lecture.

20

CSV Files are Like Spreadsheets

First, Comma-Separated Values (CSV)
files store data in two dimensions.
They're effectively spreadsheets.

The data we collected on ice cream was
downloaded as a CSV. If we open it in a
plain text editor, you can see that values
are separated by commas.

These files don't always have to use
commas as separators, but they do
need a delimiter to separate values
(maybe spaces or tabs).

21

Reading CSV Data into Python

We could open a CSV file as plaintext and
parse the file as we read it. Or we could use
the csv library to make reading the file
easier.

This library creates a Reader object out of a
File object. When each line is read from a
Reader object, the line is automatically
parsed into a 1D list, by separating the
values based on the delimiter.

We can pass optional values into the
csv.reader call to set the delimiter.

import csv

f = open("icecream.csv", "r")
reader = csv.reader(f)

data = []
for row in reader:

data.append(row)

print(data)

f.close()

22

Writing CSV Data to a File

What if we've processed data in a 2D list,
and want to save it as a CSV file?

Create a CSV Writer object based on a file.
You can use it to write one row at a time
using writer.writerow(row).

Again, the delimiter can be set to values
other than a comma by updating the
optional parameters.

import csv

data = [["chocolate", "mint chocolate",
"peppermint"],

["vanilla", "matcha", "coffee"],
["strawberry", "mango", "cherry"]]

f = open("results.csv", "w", newline="")
writer = csv.writer(f)

for row in data:
writer.writerow(row)

f.close()

23

JSON Files are Like Trees

Second, JavaScript Object
Notation (JSON) files store data
that is nested, like trees. They are
commonly used to store
information that is organized in
some structured way.

JSON files can store data types
including Booleans, numbers,
strings, lists, dictionaries, and any
combination of the above.

24

{
"vanilla" : 10,
"chocolate" : {

"chocolate" : 15,
"chocolate chip" : 7,
"mint chocolate chip" : 5

},
"other" : ["strawberry", "matcha", "coffee"]

}

Reading JSON Files into Python

The easiest way to read a JSON file into
Python is to use the JSON library.

This time, we'll use json.load(file)
or json.loads(string). These
functions read a piece of data that
matches the type of the outermost data
in the text (usually a list or dictionary).

In our example from the last slide, it
would be a dictionary mapping strings to
integers, dictionaries, and lists.

import json
f = open("icecream.json", "r")

j = json.load(f)
print(j)
f.close()

j = json.loads("""{
"vanilla" : 10,

"chocolate" : {
"chocolate" : 15,
"chocolate chip" : 7,

"mint chocolate chip" : 5
},

"other" : ["strawberry", "matcha", "coffee"]

}""")
print(j)

25

Writing JSON Data to a File

What if we want to store JSON data
in a file for later use?

Again, use the JSON library. The
json.dump(value, file)
method will take a JSON-
compatible value and write it to a
file in JSON format.

We can also use
json.dumps(value) to convert a
value to a JSON-friendly string, then
write that string to a file.

import json

d = { "vanilla" : 10,

"chocolate" : 27,

"other" : ["strawberry", "matcha", "coffee"]

}

f = open("results.json", "w")

json.dump(d, f)

f.close()

f = open("results2.json", "w")

s = json.dumps(d)

f.write(s)

f.close()
26

Reading Plaintext Data

Finally, a lot of the data we work with might not fit nicely into either a
CSV or JSON format. If we can read this data in a simple text editor, we
call this plaintext data.

To work with plaintext, you need to identify what kinds of patterns
exist in the data, and use that information to structure it. The patterns
you identify may depend on which question you're trying to answer.

27

Working with Data

28

Questions to Ask

When parsing data in a plaintext file, start by identifying the pattern;
then ask yourself a few questions about that pattern.

• Does the pattern occur across lines, or some other delimiter?

• Where is the information in a single line/section?

• What comes before or after the information you want?

29

Tools to Use

Once you've identified where the information is located, use string
methods to separate out the information you need.

String slicing (s[start:end:step]) can be used to remove parts of
the data that are unnecessary.

String splitting (s.split(".")) can be used to break up data that is
separated by a known delimiter.

String finding (s.find(":")) can be used to find the location of the
beginning or end of a section. That can be combined with slicing or
splitting to isolate the needed data.

30

Example: Parsing a Chat Log

chat.txt is a dataset based on a
chat log from a previous class. (All
student names have been modified
to preserve student privacy).

How could we get the names of
everyone who participated in the
chat? What's the pattern?

"From " occurs before each
name, and " :" occurs afterwards.
Find those indices and split based
on them.

A few lines don't match the
pattern; account for those too.

f = open("chat.txt", "r")
text = f.read()
f.close()
people = []
for line in text.split("\n"):

start = line.find("From ") \
+ len("From ")

line = line[start:]
end = line.find(" :")
line = line[:end]
if "(Privately)" in line:

end = line.find(" to")
line = line[:end]

people.append(line)
print(people) 31

Updating, Adding, and Removing Values
Once we've parsed our data into an
appropriate format, we may need to change
the structure to achieve the analysis we want.
Let's assume that we're working with a 2D list
produced from the ice cream data.

To update a value, access the appropriate
column in each row, and change it. For
example, you might want to convert a string
to a different type via type-casting.

To remove a value, pop an element of each
row based on the column that needs to be
removed. To add a value, append or insert a
new value into each row, potentially based on
the pre-existing values.

Make sure to update the header according to
a separate rule!

Assume data is a 2D list parsed from the file

header = data[0]

header.pop(0) # remove the ID

header.append("# chocolate")

for row in range(1, len(data)):

data[row].pop(0) # remove the ID

chocCount = 0 # count number of chocolate

for col in range(len(data[row])):

Make all flavors lowercase

data[row][col] = data[row][col].lower()

if "chocolate" in data[row][col]:

chocCount += 1

track chocolate count

data[row].append(chocCount)

print(data)
32

Learning Goals

• Read and write data from files

• Interpret data according to different protocols: plaintext, CSV, and
JSON

• Reformat data to add, remove, or reinterpret pre-existing data

33

