15-110 Exam1 Notes Sheet

Algorithms & Abstraction

Algorithms: procedures that specify how
to do a task or solve a problem
Abstraction: changing the level of detail
used to represent/interact with a system

Designing algorithms:

Little abstraction: assume no prior
knowledge, need to define everything
Moderate abstraction: assume user has
some basic knowledge already

Heavy abstraction: can make a lot more
assumptions about incoming knowledge

Programming Basics

Integer (int): whole numbers (14)
Floating point number (float): numbers
with a fractional part (5.735)

String (str): text in quotes ("Sup all")
Boolean (bool): truth value (True)

Number operations: +, -, *, /, **, %, //
Text operations: +, *, in
Comparison ops: <, >, <=, >=, ==, I=

Expression: code that evaluates to a
data value

Statement: code that can change the
state of the program

Variable assignment: x = expr stores
the value of expr in the variable x
Variables: x evaluates to the value
stored in the variable x

When dealing with an error:

1. Look for the line number

2. Look at the error type

3. For SyntaxErrors, look for the inline
arrow

4. For other errors, read the error
message

Data Representation

Number system: a way of representing a
number using symbols. Currency,
decimal, etc

Binary numbers: numbers in the base 2
system, composed of Os and 1s.

Bit: a single digit in binary

Byte: eight bits interpreted together

Translate binary to decimal: add
together the powers of 2 represented by
the 1s. The first eight powers of 2 are 1,
2,4,8,16, 32, 64, and 128.

Translate decimal to binary: repeatedly
look for the largest power of 2 that fits in
the decimal and remove it

Interpret binary as color: represent a
single color with RGB
(Red-Green-Blue). Each color
component is represented by three
bytes- intensity of red, then green, then
blue.

Interpret binary as text: make a lookup
table (like ASCII) that maps characters
to numbers. Convert each byte to a
number and look it up in the table.

15-110 Exam1 Notes Sheet

Function Calls

Function: an algorithm implemented
abstractly in Python that can be called
on specific inputs

Arguments: input values to function call
Returned value: evaluated result, the
output. If no output, defaults to None
Side effect: visible things that happen as
the function runs (printing, graphics, etc)

print(expr) - show expr in interpreter
abs(num) - absolute value of num
pow(x, y) -raises x to power of y
round(x, y) -round x to y sig. digits
type(expr) - type of evaluated expr
input(msg) - accepts user input
ord(c) - ASCII value of c

chr(x) - character of ASCII value x

Library: a collection of functions that
need to be imported to be used

import libraryName

math.ceil(x) - ceiling of x

math.log(x, y) - log of x with base y
math.radians(x) - degrees to radians
math.pi - pi (to some number of digits)

random.randint(x, y) - random intin
range [x, y]

random.random() - random float in
range [0, 1)

canvas.create_rectangle(a,b,c,d)
- draw a rectangle from point (a, b) to
point (c, d)
canvas.create_rectangle(a,b,c,d,
fill="blue")
- fill in the rectangle with the color blue

Function Definitions

Function definition: abstract
implementation of an algorithm.
Provides input with parameters (abstract
variables), produces a result with a
return statement.

def funName(args):
body
return result

Local scope: variables in function
definitions (including parameters) are
only accessible within that function.

Global scope: variables at the global
(top) level are accessible at the
top-level, and by any function.

Function Call Tracing: Python keeps
track of the functions it is currently
calling in nested function calls. When
Python reaches a return statement, it
returns the value to the most recent
function that called the current function.

15-110 Exam1 Notes Sheet

Booleans, Conditionals, & Errors
Logical operators: and, or, not

Short circuit evaluation: Python only
evaluates the second half of a logical
operation if it needs to

Conditional statement: control structure
that allows you to make choices in a
program.

if booleanExpr:
1fBody

elif booleanExpr:
elifBody

else:
elseBody

Syntax Error: an error that occurs when
Python cannot tokenize or structure
code. Examples: SyntaxError,
IndentationError, Incomplete Error

Runtime Error: an error that occurs
when Python encounters a problem
while running code. Examples:
NameError, TypeError
ZeroDivisionError

Logical Error: an error that occurs when
code runs properly but does not produce
the intended result. Often (but not
always) caused by a failed test case
with AssertionError

assert(funName(input) == output)

Circuits and Gates

Circuit: a hardware component that
manipulates bits to compute an
algorithmic result. Can also be
simulated with an abstract version.

Gate: an abstract component of a
circuit. Takes some number of bits as

input and outputs a bit.

Gates: A (and), V (or), = (not), @ (xor);
also nand and nor (no special symbols)

Gates (in circuits):

and: _}
>
m)=

Truth table: a table that lists all possible

input bit combinations and the resulting
output for a particular gate or circuit

nand:

Half-adder: a circuit that takes two
one-digit binary numbers, adds them,
and outputs two digits as the result

Full adder: a circuit that takes two
one-digit binary numbers and a
carried-in digit, adds all three, and
outputs two digits as the result

N-bit adder: a circuit that takes two n-bit
numbers, adds them together by
chaining together n full adders, and
outputs a n+1-digit result

15-110 Exam1 Notes Sheet

While Loops

While loop: a control structure that lets
you repeat actions while a given
Boolean expression is True

while booleanExpr:
whileBody

Infinite loop: a while loop that never
exits due to the state of the program

Loop control variable: a variable used to
manipulate the number of times a loop
iterates. Requires a start value, update
action, and continuing condition.

For Loops

For loop: a control structure that lets you
repeat actions a specific number of
times

for var in range(rangeArgs):
forBody

Range: a function that generates values
for the loop control variable in a for loop.
Can take 1-3 inputs.

range(end) # [0, end)
range(start, end) # [start, end)
range(start, end, step)

step provides the increment

Strings

Index: access a specific value in a
sequence based on its position.
Positions start at © and end at
len(seq)-1. Non-existent indexes
result in IndexError.

strExpr[index]

Slice: access a subsequence of a larger
sequence based on a given start, end
(not inclusive), and step

strExpr[start:end:step] # slice
strExpr[start:end] # also slice
default to @:len(strExpr):1

Looping over strings: use range and
indexing to access one character at a
time.

for i in range(len(strExpr)):
something with strExpr[i]

General Control Structures

Control flow chart: chart that designates
how a program steps through
commands. Uses branches for
conditional checks and arrows leading
back to previous commands for loops.

Nesting: a control structure can be
included in the body of another control
structure through use of indentation.

Nested loop: a loop with another loop in
its body. The inner loop is fully executed
for each iteration of the outer loop.

