Read and write code using 1D and 2D lists
Use string/list methods to call functions directly on values

Recognize whether two values have the same reference in memory
Recognize the difference between destructive vs. non-destructive
functions/operations on mutable data types

Use aliasing to write functions that destructively change lists

Define and recognize base cases and recursive cases in recursive code
Read and write basic recursive code

Trace over recursive functions that use multiple recursive calls with Towers of
Hanoi

Recognize linear search on lists and in recursive contexts
Use binary search when reading and writing code to search for items in sorted
lists

|dentify the keys and values in a dictionary
Use dictionaries when writing and reading code that uses pairs of data
Use for loops to iterate over the parts of an iterable value

Identify the worst case and best case inputs of functions
Compare the function families that characterize different functions
Calculate a specific function or algorithm's efficiency using Big-O notation

Identify core parts of trees, including nodes, children, the root, and leaves
Use binary trees implemented with dictionaries when reading and writing code

Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

Use graphs implemented as dictionaries when reading and writing simple
algorithms in code

Identify whether a tree is a tree, a binary tree, or a binary search tree (BST)
Search for values in trees using linear search and in BSTs using binary search
Analyze the efficiency of binary search on balanced vs. unbalanced BSTs
Recognize the requirements for building a good hash function and a good
hashtable that lead to constant-time search



Identify brute force approaches to common problems that run in O(n!) or O(2"),
including solutions to Travelling Salesperson, puzzle-solving, subset sum,
Boolean satisfiability, and exam scheduling

Define the complexity classes P and NP and explain why these classes are
important

Identify whether an algorithm is tractable or intractable, and whether it is in P,
NP, or neither complexity class

Use heuristics to find good-enough solutions to NP problems in polynomial time



