
Simulation –
Model, View, Controller

15-110 – Wednesday 04/03

Quizlet

2

Announcements

• Tutorial: how to work with Hw6 starter files

3

Learning Goals

• Represent the state of a system in a model by identifying components
and rules

• Visualize a model using graphics

• Update a model over time based on rules

4

Simulations and Models

5

Simulations are Imitations of Real Life

A simulation is an automated
imitation of a real-world event.
By running simulations on different
starting inputs, and by interacting
with them while they run, we can
test how the event changes under
different circumstances and learn
interesting things.
Simulation is used across many
different fields, including training
people, testing designs, and
making predictions (like whether a
flight plan works, or how a
pandemic evolves).

6

Simulations vs. Real-world Experiments

Simulations share a lot in common with real world experiments. Major
differences include:

• Experiments run in real time; simulations can be sped up, slowed
down, or paused.
• Experiments can be expensive; simulations are fairly cheap.
• Experiments include all possible factors; simulations only include

factors we program in.

7

Example Simulations

You can explore simulations across a variety of fields on the site
NetLogo, which is focused entirely on modeling and simulation.

• Ant colony movements
• Flocking behavior
• Gravitational forces
• Climate change
• Fire spreading
• Rumor mills

8

http://www.netlogoweb.org/launch
http://www.netlogoweb.org/launch
http://www.netlogoweb.org/launch
http://www.netlogoweb.org/launch
http://www.netlogoweb.org/launch
http://www.netlogoweb.org/launch

Simulations Run on Models

How do we program a simulation? You need to design a good model, which
will mimic the part of the real world you want to study. The simulation
showcases how the system represented by the model changes over time, or
how it changes based on events.

Models are composed of two parts:
• The components of the system (information that describes the world at an exact

moment).
• The rules of the system (how the components should change as time passes/events

occur).

Components are like variables, and rules are like functions!

9

Example Model

Problem: how much ice cream can an ice cream shop expect to sell on
a given day?

Model Components: amount of ice cream sold; price; temperature;
number of flavors available

Model Rules: some number of people buy ice cream every day; when it
is hotter outside, people buy more ice cream; when prices go up,
demand goes down; an increased number of flavors increases the
number of people who buy ice cream (to a certain point)

10

Activity: Design a Model

Problem: we want to track how many birds are in a local area over the
course of a year, to see how the population changes.

You do: What are the components of this model? What are the rules?

11

Important: Simulations Rely on the Model!

Simulations are powerful, but they can also be suspect to error and bias,
because the results are influenced by what is included in the model.

Example: you could build a fancy simulation of an amusement park to test
different park configurations and estimate how much profit could be
expected from each arrangement. But if your model doesn't include a
variable for weather, the results may all be overly-optimistic.

Try investigating any simulations you might interact with to see what biases
and errors they might include.

12

Coding a Simulation

13

Simulation Parts in Code

We'll implement simulations in this class graphically, like in NetLogo,
using Tkinter.

We'll start with very abstract simulations (to keep the code simple) and
will show how to program more complex simulations next time.

Our simulation code will be composed of three parts:
• A model which stores the core components in a shared data structure and

implements core rules in functions
• Time and event controllers which tell the model when to run rules that

update the components
• A graphical view which repeatedly displays the current state of the model

14

Model, View, Controller

15

Model

Controller View

tells w
hen to

run rules

provides

components to
draw

Making the Components

We'll represent the model's components in code in a dictionary called data. The keys will
take the place of variable names and the values will be the actual component values.

For example, to store information about a circle that represents some part of the model,
we could set:

data["x"] = 200
data["y"] = 200
data["r"] = 50

Storing all the components in one structure lets us pass the same structure around to all
the functions we write using aliasing. This will let us update components in a rule function,
then display the same (updated) data in a separate view function.

16

Displaying the Model

To display the whole model, we'll use Tkinter to draw graphics that represent the
components visually. By referring to component values in data in the view function, we
can make graphics that change alongside the model.

For example, if data = { "x" : 200, "y" : 200, "r" : 50 }, we could draw a
circle with:

canvas.create_oval(data["x"] - data["r"], data["y"] - data["r"],
 data["x"] + data["r"], data["y"] + data["r"])

We'll erase and re-draw the graphics window every time the rules of the simulation run. If
we change the components a little bit at a time, this makes the display appear to update
smoothly.

17

Running the Rules

We can run the simulation rules in two ways: either over a period of time or
when events happen (or both!). We'll address the time controller first, then
the event controller in a later lecture.

The time controller will create a time loop and call a function that
implements the model's rules within that time loop at equal time intervals.
By calling this function continuously, we can simulate time passing.

If the model's rules change the model's components in data, this will
simulate the model changing over time!

data["x"] = data["x"] + 5 # move the circle to the right

18

Simulation Functions

We'll use a new simulation framework that you can find linked on the course
website to support our simulations. This framework manages the controllers
for you; you just need to focus on implementing the model and the view. To
do this, update three functions to build a simple simulation:

• makeModel(data) makes the original components. data is the model dictionary

• runRules(data, call) runs the rules to update data. The integer call
represents the number of times runRules has been called

• makeView(data, canvas) displays the model. canvas is a Tkinter canvas

This is different from the code we're used to because the functions work
together instead of running in a sequential order.

19

Sidebar: Controller Functions – Time Loop

The starter code we provide helps the simulation run smoothly. You don't need to
understand this code, but here's more details if you're interested.

The time controller in the function timeLoop calls our function runRules, then calls
makeView to update the view. It simulates a time loop with the built-in function
canvas.after. This function calls timeLoop again (like recursion) but pauses before
making the call. That lets us recurse infinitely without freezing the window.

The function runSimulation(width, height, timeRate) sets up this time loop.
You can speed up/slow down the simulation by changing timeRate in the function call.

You can also change the window size by changing width and height in the function call
arguments.

20

Simple Example – Color-Changing Ball

Let's start with a simple simulation. Say we want to draw a circle and have
the color of the circle change over time.

The components should hold any values that might change. In this case,
that's the color of the circle. Set an initial component value in makeModel.

The rules should describe how the model changes over time. In this case, we
change the color in the shared dictionary with every call to runRules.

The view should draw a circle in the middle of the window and set its color
based on the color in the model. This is done in makeView.

21

Simple Example Code
def makeModel(data):
 # put variables in data here
 data["color"] = "red"

def makeView(data, canvas):
 # (200, 200) is center point
 # make sure to reference data for the parts that change!
 canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
 fill=data["color"])

def runRules(data, call):
 import random
 # Let's pick a color randomly!
 newColor = random.choice(["red", "orange", "yellow",
 "green", "blue", "purple"])
 data["color"] = newColor # update data to change the model

22

Activity: Make the circle grow

You do: open the simulation starter code and copy in the functions
from the previous slide. Run the code to make sure it works, then
modify the code in the three functions so that the circle also grows
larger as time passes.

Hint: you'll need to add one component to the model, the thing that is
changing. You should change that component in runRules and access
it while drawing the circle in makeView.

23

Summary: Model, View, Controller

Throughout the process of building simulations, we've structured code
based on the model, view, controller framework.

Model: manages the components and rules of the thing we're
simulating

View: displays the data in the model so that the user can look at it

Controller: manages time loops and events that provide changes to the
model

24

Learning Goals

• Represent the state of a system in a model by identifying components
and rules

• Visualize a model using graphics

• Update a model over time based on rules

25

