
Simulation –
Experiments and Trials

15-110 – Monday 04/15

Announcements

• Check6-1 grades released
• Make sure to view your feedback on the programming part especially! You'll

want to fix errors now so that they don't impact your work on Check6-2 and
Hw6

• Check6-1 Revisions due Wednesday at noon

• Check6-2 due Friday at noon

2

Help on Assignments

• Reminder: using code produced by ChatGPT or similar tools is an
academic integrity violation.
• What to do when you’re struggling?
• Post on Piazza
• Ask questions at office hours
• Attend a small group
• Make a revision submission
• Collaborate with another student
• Submit incomplete work
• Review lecture slides
• Take a break

3

Learning Goals

• Update a model after events (mouse-based and keyboard-based)
based on rules

• Use Monte Carlo methods to estimate the answer to a question

4

Interaction Events

5

Interaction Events

In the previous Simulation lecture, we learned about how to use controllers
that change a model over time. The second kind of controller is one that
captures events.

An event represents a single user interaction with the computer system.
Events come in many forms: keyboard presses, mouse clicks, touchpad
gestures, button presses, touchscreen presses, etc...

When you take an action on your computer, a signal is sent from the
computer hardware to any programs that are currently running. That signal
has information about the type of the event (key press vs. mouse click), plus
any additional information that might be useful (which key was pressed).

6

Sidebar: Controller Functions – Event Loop
The event controller runs an event loop to capture the signals that the computer
sends out, similar to the time loop discussed in the previous lecture. However,
events occur irregularly, unlike regularly-timed rules.

To implement this event loop, we'll have our simulation system constantly listen for
events. When an event occurs, the controller will catch it and send the event data
on to the correct rule function; that function will tell the view to update. This is
done with a special kind of Tkinter function called bind and is provided in the
starter code.

With Tkinter we can listen for and bind functions to lots of different event types.
We'll care about just two: <Key>, a key press, and <Button-1>, a left mouse click.
There are lots of other Tkinter events we can implement if we want them:
https://web.archive.org/web/20190512164300id_/http://infohost.nmt.edu/tcc/hel
p/pubs/tkinter/web/event-types.html

7

https://web.archive.org/web/20190512164300id_/http:/infohost.nmt.edu/tcc/help/pubs/tkinter/web/event-types.html
https://web.archive.org/web/20190512164300id_/http:/infohost.nmt.edu/tcc/help/pubs/tkinter/web/event-types.html

Event Rules

To deal with Key and Mouse events, we'll introduce two new rule functions
to our simulation framework:

• keyPressed(data, event)
• mousePressed(data, event)

Each of these takes data (our components data structure) and event, an
event object that contains the information about the event.

These work like runRules(data, call) – we update data, then the
controller refreshes the view immediately afterwards. This lets us make
visible changes to the model.

8

keyPressed Events

In keyPressed, the event parameter contains two values we can access
with a . (like string or list methods):

• event.char is a string that holds the character pressed

• event.keysym is a string that holds the 'name' of the character, for
characters we can't show in a string (e.g., Enter or BackSpace)

If we want to draw the last-pressed character in the middle of the screen, for
example, we would store that character in data, then draw it in makeView:

def keyPressed(data, event):
 data["text"] = event.char

9

Example Key Event: Type Colors
def makeModel(data):
 data["color"] = "red"
 data["tmp"] = "" # need to hold partial strings

def makeView(data, canvas):
 canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
 fill=data["color"])

def keyPressed(data, event):
 # build up a color string one char at a time until user presses Return
 if event.keysym != "Return":
 data["tmp"] += event.char
 else:
 # move the color into data["color"]
 data["color"] = data["tmp"]
 data["tmp"] = ""

10

mousePressed Events

In mousePressed, the event parameter holds the (x, y) pixel location
where the user clicked on the canvas.

• event.x is the x location
• event.y is the y location

If we want to move a circle around the canvas to be centered wherever
we click, we'd need to store the center location and draw the circle
based on the model location in makeView:
def mousePressed(data, event):
 data["cx"] = event.x
 data["cy"] = event.y

11

Example Mouse Event: Click to Change Color
def makeModel(data):
 data["color"] = "red"

def makeView(data, canvas):
 canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
 fill=data["color"])

def mousePressed(data, event):
 import random
 newColor = random.choice(["red", "orange", "yellow",
 "green", "blue", "purple"])
 # Check if the user clicked inside the circle
 # Is the distance between the center and the click less than the radius?
 if ((event.x - 200)**2 + (event.y - 200)**2)**0.5 <= 50:
 data["color"] = newColor

12

Monte Carlo Methods

13

Randomness in Simulation

Most simulations use randomness in some way; otherwise, every run
of the simulation will produce the same result.

Using randomness in a simulation means that the same simulation
might have multiple different outcomes on the same input model. A
single run of a simulation is not a good estimate of the true average
outcome.

To find the truth in the randomness, we need to use probability!

14

Law of Large Numbers

The Law of Large Numbers states that if you perform an experiment multiple
times, the average of the results will approach the expected value of the
true answer as the number of trials grows.

This law works for simulation as well! We can calculate the expected value of
an event by simulating it a large number of times and averaging the results.

We call programs that repeat simulations this way Monte Carlo methods,
after the famous gambling district in the French Riviera. We're gambling with
the accuracy of the answer.

15

Monte Carlo Method Structure

If we put our simulation code in the function runTrial and want to find the
odds that a simulation 'succeeds', a Monte Carlo method might take the
following format:

def getExpectedValue(numTrials):
 count = 0
 for trial in range(numTrials):
 result = runTrial() # run a new simulation
 if result == True: # check the result
 count = count + 1
 return count / numTrials # return the probability

16

Monte Carlo Example

Every year, SCS holds the Random Distance Race. The length of this race is determined by
rolling two dice. What is the expected number of laps a runner will need to complete?

import random
def runTrial():
 return random.randint(1, 6) + random.randint(1, 6)

def getExpectedValue(numTrials):
 lapCount = 0
 for trial in range(numTrials):
 lapCount += runTrial()
 return lapCount / numTrials

17

Activity: Monte Carlo Methods

You do: what are the odds that a runner in the Random Distance Race
will need to run 10 or more laps?

Write the code to run the trial. You can modify the code from the
previous slide.

18

Testing Simulations

19

Using Simulations

Once we've programmed a robust simulation, we can change the
starting state to see how it changes the simulation. This is especially
useful when we want to predict certain things about the world.

We can check predictions more quickly by making timeRate smaller
(calling the simulation more often).

We've included on the course website a pre-written simulation that
models a zombie apocalypse. Let's use this as an example of how to
make predictions by using Monte Carlo methods with simulations.

20

Zombie Simulation

This simulation models the world as a grid. Each cell of
the grid can be empty (grey) or can have a human
(green) or a zombie (purple) on it.

At every time step, the zombies move in a random
direction while the humans stay still (they're hiding). If a
zombie is bordering a human, there is an infection rate
(a probability) for whether the human will turn into a
zombie or not. The simulation prints the number of days
that full infection took when all entities are zombies.

Here are a few questions we can ask: how long will it
take for the whole world to become zombies...
• In our current code?
• If we start with more or fewer humans?
• If we start with a higher/lower infection rate?

21

Calculating Outcomes

If we want to explore the simulation, we can run it with the visualization on.

If we just want to find the average results, we can call the makeModel and
runRules functions from a new function where the time loop becomes a
while loop. Have that function return the number of days it takes to zombify
all the humans.

When we run this function with getExpectedValues we find the expected
amount of time left for the human race. Monte Carlo solves the problem!

22

Calculating Outcomes Code
def runTrial():
 data = { }
 makeModel(data) # initial setup
 daysPassed = 0
 while not allZombies(data["creatures"]): # while loop instead of time loop
 runRules(data, daysPassed)
 daysPassed += 1
 return daysPassed

def getExpectedValue(numTrials):
 dayCount = 0
 for trial in range(numTrials):
 dayCount += runTrial()
 return dayCount / numTrials

print(getExpectedValue(100))

23

Learning Goals

• Update a model after events (mouse-based and keyboard-based)
based on rules

• Use Monte Carlo methods to estimate the answer to a question

24

