
Function Definitions
15-110 – Friday 1/26

Announcements

2

•Hw1 is due Monday at noon
•Next week: First Quizlet

• There are 9 quizlets throughout the semester on Wednesdays
- Lowest two scores dropped

• Procedure:

- Bring a piece of paper

- You’ll have 5 minutes to answer the question displayed on the screen

- No computers, phones, notes, or collaboration

- When time is up, take a picture and upload to Gradescope

- Demo next time

Learning Objectives

• Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

• Recognize the difference between local and global scope

• Trace function calls to understand how Python keeps track of nested
function calls

3

Function Definitions

4

Function Definitions Run on Abstract Input

Now that we have all the individual components of functions, we can
write new function definitions ourselves.

To write a function, you need to determine what algorithm you want
to implement. You'll convert that algorithm into code that runs on
abstract input.

5

Core Function Definition

Let's start with a simple
function that has no explicit
input or output; instead, it has a
side effect (printed lines).

def helloWorld():
print("Hello World!")
print("How are you?")

helloWorld()

def is how Python knows the following code is a function
definition

helloWorld is the name of the function.

The colon at the end of the first line, and the indentation at the
beginning of the second and third, tell Python that we're in the
body of the function.

The body holds the algorithm. When the indentation stops, the
function is done.

In this example, the last line calls the function we've written. Use a
function’s name to call it.

6

Parameters are Abstracted Arguments

To add input to the function definition, add parameters inside the parentheses next to
the name.

These parameters are variables that are not given initial values. Their initial values will be
provided by the arguments given each time the function is called.

def hello(name):
print("Hello, " + name + "!")
print("How are you?")

hello("Stella")
hello("Dippy") 7

Return Provides the Returned Value Output

To make our function have a non-None output, we need to have a return statement.
This statement specifies the value that should be substituted for the function call
when the function is called on a specific input.

def makeHello(name):

return "Hello, " + name + "! How are you?"

s = makeHello("Scotty")

As soon as Python returns a value, it exits the function. Python ignores any lines of
code after a return statement.

8

Activity: Write a Function

You do: write a function convertToQuarters that takes a number
of dollars and converts it into quarters, returning the number of
quarters.

For example, if you call convertToQuarters on 2 ($2), the function
should return 8 (8 quarters).

9

Control Flow

Writing code with function definitions introduces a new concept to our programs
– control flow. This is the order that statements are executed in as we run a
program.

Before, all our programs ran sequentially from the first statement to the last. But
with function definitions, Python will need to redirect the control flow whenever
we call a function that we've defined.

Control flow is an incredibly useful tool, but it also makes it more difficult to read
and comprehend a program. In particular, when you read code with a function
definition, you have to keep in mind that that definition will not influence the
program until it is called.

10

Example Code

For example, what will be printed when we run the following code?

def test(x):
print("A:", x)
return x + 5

y = 2
print("B:", y)
z = test(y + 1)

We do not enter the function until it is called. That means B is printed before A, even though
its line occurs further down in the code!

11

Interpreter:
B: 2
A: 3

Scope

14

Variables Have Different Scopes

def averageOfThree(x, y, z):
total = x + y + z
return total / 3

print(averageOfThree(1, 4, 10)) # 5.0
print(total) # NameError!

The variable total has a local scope and is accessible only within
the function averageOfThree. Note that the parameters x, y,
and z also have local scope, as they must be assigned values in a
function call before we can use them.

16

Everything Can Access Global Variables

On the other hand, if a function is told to use a variable it hasn't defined, the
function automatically looks in the global scope (outside the function at the top
level) to see if the variable exists there.

x = 5

def addTwo():
y = x + 2
return y

print(addTwo() - x)

If you change a global variable in a function, that's a side effect! It's unlikely that
you'll want to use this, but good to know for debugging.

17

It's like a one-way mirror. Functions
can see global variables, but global-
level code cannot see local variables.

Scope is Like Names

You can think of the scope of a variable as
being like its last name. For example,
consider the following code:

x = 5

def test():
x = 2
print("A", x)

test()
print("B", x)

x exists in both the local and the global
scope, but the two x variables are separate
and have different values.

Analogy: knowing two people both named
Andrew. They have the same first name, but
different last names.

In the code above, the last name of the
function's x would be test, while the last
name of the top-level x would be global.

In general, it's best to keep variable names
different to avoid confusion.

18

Activity: Local or Global?

Which variables in the following code snippet are global? Which are local?
For the local variables, which function can see them?

name = "Farnam"

def greet(day):
punctuation = "!"
print("Hello, " + name + punctuation)
print("Today is " + day + punctuation)

def leave():
punctuation = "."
print("Goodbye, " + name + punctuation)

greet("Friday")
leave()

19

Function Call Tracing

20

Analyzing functions

You do: what are the arguments and returned value of this function call,
given the definition? What will it print?

def addTip(cost, percent):
tip = cost * percent
print("Tip:", tip)
return cost + tip

total = addTip(25, 0.2)

21

Function Calls in Function Definitions
It isn't too hard to trace a function call when it goes
through a single definition, but it gets a lot harder
when that definition calls another function.

When the code to the right calls the function outer,
outer will run a bit of code, then call the function
inner.

Python needs to keep track of which variables are in
scope at any given point, and where returned values
should be sent.

def outer(x):
y = x / 2
print(Outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("Inner y:", y)
return y

print(outer(4))

22

Interpreter:

Tracing the Code

When Python runs through this code, it adds
outer to its state, then it adds inner.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

23

outer function
inner function

print(outer(4))

Tracing the Code

When it reaches the last line, it must call
outer to evaluate the expression.

The computer puts a 'bookmark' on the line
it was on so it won't lose its place.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

24

Interpreter:

outer function
inner function

function call

Tracing the Code

Python traces through the outer function
normally, keeping track of the local state,
until it reaches the call to inner.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

25

print(outer(4))

x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
Interpreter:

return inner(2.0) + 3

Once again, Python leaves a 'bookmark' at its
current location, then moves to the inner
function to set up a new local state.

Tracing the Code

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

26

print(outer(4))

Interpreter:
outer y: 2.0

x = 4
y = 4 / 2 = 2.0

outer function
inner function

function call

Tracing the Code

Python can fully execute inner without
calling another function.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

27

Interpreter:
outer y: 2.0

print(outer(4))

return inner(2.0) + 3 x = 4
y = 4 / 2 = 2.0

Interpreter:
outer y: 2.0
inner y: 3.0

outer function
inner function

x = 2.0
y = 2.0 + 1 = 3.0

return 3.0

When Python reaches the return statement
of inner, it returns 3.0 to the function that
previously called it, outer, by checking the
bookmark.

Tracing the Code

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

28

print(outer(4))

return inner(2.0) + 3 x = 4
y = 4 / 2 = 2.0

outer function
inner function

x = 2.0
y = 2.0 + 1 = 3.0

return value

Interpreter:
outer y: 2.0
inner y: 3.0

return inner(2.0) + 3return 3.0 + 3

When the value 3.0 is returned, it takes the
place of the function call expression.

Now Python can finish running the outer
function.

Tracing the Code

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

29

print(outer(4))

x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0

return 3.0 + 3return 6.0

When outer finishes, it returns 6.0 to the
next bookmarked function, the original call.

Tracing the Code

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

30

print(outer(4))

x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0

return value

6.0 takes the place of outer(4), the value
is printed, and the code is done!

print(outer(4))print(6.0)

Interpreter:
outer y: 2.0
inner y: 3.0Tracing the Code

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

31

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0
6.0

Analogy: Baking with Bookmarks
Function call tracing is like a series of bookmarks
that help you keep your place as you trace the code.

For example, perhaps I'm following a recipe to make
an apple tart. One step of the recipe tells me to
make a frangipane (custard), but I don't know how
to do that!

I can put a bookmark on my current step and find
another cookbook with a recipe for making
frangipane, then start following that recipe.

Maybe that recipe tells me to cream the butter and
sugar, and I have to look in yet another cookbook to
learn how to do that. Each new recipe is another
function call.

32

makeAppleTart(ingredients)

makeFrangipane(subIngredients)

creamButterSugar(butter, sugar)

calls

calls

Function Calls in Error Messages

Function call 'bookmarks' will show
up naturally in your code whenever
you encounter an error message.

The lines of the error message show
you exactly which function calls led
to the location where the error
occurred.

If we insert an error into the middle
of the code, you can see how each
'bookmark' is listed out.

def outer(x):
y = x / 2
return inner(y) + 3

def inner(a):
b = a + 1
print(oops) # will cause an error
return b

print(outer(4))

33

Traceback (most recent call last):
 File "C:\Users\river\Downloads\example.py", line 10, in <module>
 print(outer(4))
 File "C:\Users\river\Downloads\example.py", line 3, in outer
 return inner(y) + 3
 File "C:\Users\river\Downloads\example.py", line 7, in inner
 print(oops) # will cause an error
NameError: name 'oops' is not defined

[if time] Activity: Trace the Function Calls

You do: given the code to the right, trace
through the execution of the code and
the function calls.

It can be helpful to jot down the current
variable values as well, so you don't have
to hold them all in your head.

What will be printed at the end?

def calculateTip(cost):
tipRate = 0.2
return cost * tipRate

def payForMeal(cash, cost):
cost = cost + calculateTip(cost)
cash = cash - cost
print("Thanks!")
return cash

wallet = 20.00
wallet = payForMeal(wallet, 8.00)
print("Money remaining:", wallet)

34

Learning Objectives

• Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

• Recognize the difference between local and global scope

• Trace function calls to understand how Python keeps track of nested
function calls

35

