
Hw1 – Awesome Fences!

1

Circuits and Gates
15-110 – Wednesday 1/31

Announcements

• Hw1 feedback released
• Make sure to view programming feedback!
• Tutorial on website

4

Quizlet

5

Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms
and abstraction

6

Computers Run on Hardware
Software: the abstracted concepts of
computation- how computers represent
data, and how programs can manipulate
data.

Hardware: the actual physical
components used to implement software,
like the laptop components shown to the
right.

All the operations we perform on a
computer correspond to physical actions
within the hardware of the machine. How
does this work?

7

Bits are Electric Voltage

We previously discussed how
everything in a computer is
represented using bits (0s and 1s).

In hardware, bits are represented as
electrical voltage. A high level of
voltage is considered a 1; a low level
of voltage is considered a 0.

By redirecting electrical flow
throughout a system, we can change
the values of data in hardware.

8

Circuits Manipulate Voltage
The computer uses circuits to perform
computational actions. Circuits redirect
electricity to different parts of hardware.

Physical components of circuits (like
transistors and capacitors) are out of the
scope of this class. If you're interested,
take an Intro to Electrical Engineering
class!

Instead, we will discuss how to use
gates, which are abstracted circuit
components. Every gate we discuss can
be directly translated to a real hardware
circuit.

9

Logical Gates

10

Gates are Hardware's Boolean Operations

Recall that Booleans have two values (True and False), just like bits
(1/high voltage and 0/low voltage).

We can build a gate to have the same effect as a Boolean operation,
but with bits as input/output instead of True/False values.

Let's start with three familiar gates: and, or, and not.

11

Basic Gates – Actual Hardware
Our three basic gates can be represented in actual hardware

An and gate takes two inputs and
outputs 1 only if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0, 0
becomes 1)

12

Basic Gates – Shorthand
We'll use a shorthand when building circuits with these gates

An and gate takes two inputs and
outputs 1 if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0,
0 becomes 1)

A
B A ∧ B

A
B A ∨ B

A ¬ A

A B A ∧ B

1 1 1

1 0 0

0 1 0

0 0 0

A B A ∨ B

1 1 1

1 0 1

0 1 1

0 0 0

A ¬ A

1 0

0 1

13

Circuit Simulation

When working with gates, it can
help to simulate a circuit using the
gates to investigate how they work.

There are lots of free online circuit
simulators. We'll use this one:
https://logic.ly/demo

14

https://logic.ly/demo

Algorithms with Gates

15

Multiple Representations of Gate Algorithms

Just like with Boolean expressions, we can combine gates together in
different orders to achieve different results. This lets us build
algorithms using gates.

When we want to represent an algorithm that uses gates, we can use
one of three different representation formats: a Boolean expression, a
circuit, or a truth table.

16

Truth Tables Show All Possibilities
So far, we've used truth tables to show all the
outcomes of a single gate or operation.

We can also use these tables to show all the
possible inputs and outputs of expressions.

For example, the truth table to the right shows
all possibilities for the following expression:
X ∨ ¬Y

As a Boolean expression, this would be:
X or (not Y)

X Y ¬Y X ∨ ¬Y

1 1 0 1

1 0 1 1

0 1 0 0

0 0 1 1

17

Three Representations

Boolean Expressions, Circuits, and Truth Tables can all be used to
represent the same algorithm. Why do we use all three?

• Boolean Expressions are good for quickly representing an algorithm in
text
• Circuits are a more visual option, and more interactive
• Truth Tables lay out all inputs and outputs, which helps derive

algorithms

18

Truth Table Clarify Complex Expressions
Truth tables are especially useful when you need to determine the output of a fairly
complex expression, like the rightmost column here. You can break down the
expression into smaller parts and give each part its own column.

A B C (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C)

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

A B C A ∧ B ∧ C A ∧ ¬B ∧ ¬C ¬A ∧ B ∧ ¬C ¬A ∧ ¬B ∧ C (A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C)

1 1 1 1 0 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 1

0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0
19

Truth Table to Boolean Expression to Circuit
We can use a truth table to derive a bit
expression from a set of inputs and
outputs; for example, the truth table
shown on the right matches the
expression below it. This requires deep
problem solving, so it is too complex to
cover in this class.

Once we have the bit expression, we can
use it to create a corresponding circuit.
Just combine the appropriate gates in the
order specified by the parentheses.

The three representations shown to the
right all express the exact same logical
combination!

B ∧ (A ∨ C)

A B C ???

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

22

Circuit to Boolean Expression to Truth Table
Likewise, given a circuit, we can construct its truth table
or the equivalent bit expression.

Given the circuit shown below, we can construct a truth
table either by logically determining the result, or by
simulating all possible input combinations. We can also
find the equivalent Boolean expression by translating
gates to Boolean operators.

A B C Output
1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

¬A ∧ (B ∨ C)

23

Conversion Chart

24S

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

¬A ∧ (B ∨ C)

Try all possible input
combinations

Use problem solving
and logic

Use problem so
lvin

g

and lo
gic

Try
 all p

ossi
ble in

put

combinatio
ns

Convert gates to

Boolean operators

Convert Boolean

operators to gates

Activity: Find the positive inputs!

Convert the following circuit to the
equivalent Boolean Expression,
then write the equivalent truth
table.

Which input combinations will
result in the circuit outputting 1
(the light bulb lighting up)?

and or not

25

A Few More Gates
Let's add a few more gates to simplify our circuits.

A nand gate is ¬ (A ∧ B)

A nor gate is ¬ (A ∨ B)

An xor gate is 1 if exactly one of A
and B are 1 (and the other is 0). It is
the same as (A ∧ ¬B) ∨ (¬A ∧ B).

A
B ¬ (A ∧ B)

A
B ¬ (A ∨ B)

A ⊕ B

A B ¬ (A ∧ B)

1 1 0

1 0 1

0 1 1

0 0 1

A B ¬ (A ∨ B)

1 1 0

1 0 0

0 1 0

0 0 1

A B A ⊕ B

1 1 0

1 0 1

0 1 1

0 0 0

A
B

26

Abstraction with Gates

27

Writing Real Algorithms with Circuits

Now that we know the basics of interacting with gates and circuits,
we can start building circuits that do real things.

We'll focus on a basic action that computers do all the time:
integer addition.

28

Addition with Gates
Let's say that we want to build a
circuit that takes two numbers
(represented in binary), adds them
together, and outputs the result. How
do we do this?

First, simplify. Let's solve a
subproblem. How do we add two one-
bit numbers, X and Y? What are all the
possible inputs and outputs?

Note that 1 + 1 = 10 because we're
working in binary

X Y X + Y

1 1 10

1 0 01

0 1 01

0 0 00

29

Addition with Gates – Half-Adder

Because we need two digits to hold the
result, we need two result values: Sum
(the 1s digit) and Carry (the 2s digit).

How can we compute Sum and Carry
logically? Examine the truth table: Sum is
just an Xor function, and Carry is just an
And function!

We can make a circuit to do one-bit
addition, as is shown on the right. This is
called a Half-Adder.

X Y X + Y Carry Sum X ∧ Y X ⊕ Y

1 1 10 1 0 1 0

1 0 01 0 1 0 1

0 1 01 0 1 0 1

0 0 00 0 0 0 0

30

Addition with Gates Over Multiple Digits
Now expand the circuit to handle
numbers with multiple bits (e.g. 4-bit
numbers). What needs to change?

When adding two numbers, we might
need to carry an output over to the
next column of the addition.

For the two's column on the right, call
the carried-in bit Cin and next carry Cout.

We need to modify our half-adder to
have a third input Cin and update the
computations for Carry (Cout) and Sum.

<- carried bits
1 0 0 1 +
0 0 1 1 =

Cout Cin

1

0 0

1

11

31

Addition with Gates – Full Adder
Start with the needed values for Cout and Sum. With a little problem solving and
logic that are beyond the requirements of this course, we can determine that:
• Cout is equivalent to ((X ∨ Y) ∧ Cin) ∨ (X ∧ Y)
• Sum is the result of (X ⊕ Y) ⊕ Cin

Cin X Y Cout= ((X ∨ Y) ∧ Cin) ∨ (X ∧ Y) Sum = (X ⊕ Y) ⊕
Cin

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0

32

Addition with Gates – N-bit Adder

Finally, to add two four-bit numbers
together, we can just chain
together the Full Adder we've
created four times.

Instead of inputting Cin, we pass in
the Cout from the prior computation
(and pass in 0 for the 1s digit). This
process repeats the concept of the
Full Adder multiple times in order
to make a more complex circuit.

The result is really confusing to look
at...

33

Addition with Gates – N-bit Adder

To make this easier to understand, use
abstraction to replace each Full Adder
with a box. That box holds the Full
Adder circuit within it, but it doesn't
need to bother with all the internal
components.

Now we can do proper addition!

Let's try it out. What's 9 + 3?
• 9 is 8+1=1001, 3 is 2+1=0011
• Walk through the full adders...
• The output is 1100=8+4
• That's 12! It works!

34

Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've
designed to build an actual hardware
circuit that does 4-bit addition (or
more!).

See a demo of what that looks like
here:
https://youtu.be/wvJc9CZcvBc?t=742

35

https://youtu.be/wvJc9CZcvBc?t=742

Learning Goals

• Translate Boolean expressions to truth tables and circuits

• Translate circuits to truth tables and Boolean expressions

• Recognize how addition is done at the circuit level using algorithms
and abstraction

36

