
String Indexing, Slicing, and
Looping

15-110 – Wednesday 02/07

Quizlet

Paper and pencils in the front!

2

Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

3

How Can We Process Text Data?

So far, we've mainly written programs that deal with numbers.

We can use strings in programs, but there isn't much we can do with
them so far. But real text data is modular- you can break it up into
sentences, words, letters.

How can we write code that treats text like a set of data instead of a
single item?

4

Indexing and Slicing

5

Strings are Made of Characters

Unlike numbers and Booleans, strings can be broken down into individual parts
(characters). How can we access a specific character in a string?

First, we need to determine what each character's position is. Python assigns
integer positions in order, starting with 0.

S T E L L A

0 1 2 3 4 5

STELLA

6

Getting Characters By Location

If we know a character's position, Python will let us access that
character directly from the string. Use square brackets with the
integer position in between to get the character. This is called
indexing.

s = "STELLA"
c = s[2] # "E"

We can get the number of characters in a string with the built-in
function len(s). This function will prove useful soon.

7

Common String Indexes

How do we get the first character in a string?
s[0]

How do we get the last character in a string?
s[len(s) - 1]

What happens if we try an index outside of the string?
s[len(s)] # runtime error

8

Activity: Guess the Index

Given the string "abc123", what is the index of...

"a"?

"c"?

"3"?

9

String Slicing Produces a Substring

We can also get a whole substring from a string by specifying a slice.

Slices are exactly like ranges – they can have a start, an end, and a
step. But slices are represented as numbers inside of square brackets,
separated by colons.

s = "abcde"
print(s[2:len(s):1]) # prints "cde"
print(s[0:len(s)-1:1]) # prints "abcd"
print(s[0:len(s):2]) # prints "ace"

10

String Slicing Shorthand

Like with range, we don't always need to specify values for the start, end, and
step. These three parts have default values: 0 for start, len(value) for end, and
1 for step. But the syntax to use default values looks a little different.

s[::] and s[:] are both the string itself, unchanged (we can remove the
second colon when the step is 1)

s[1:] is the string without the first character (start is 1)

s[:len(s)-1] is the string without the last character (end is len(s)-1)

s[::3] is every third character of the string (step is 3)

11

Example: Extract Information from Text

Let's assume we have a variable text that holds a greeting:
"Hello NAME". We want to extract just the name from the text.

text = "Hello Jonathan"

We can use string slicing to remove the first part of the string. How do
we know where to start the slice?

Start the slice at the location of the first character of the name:
name = text[len("Hello "):] # "Jonathan" 12

More String Things

13

Special Characters

Most characters that appear in text can be typed directly into strings, but
some are more difficult to work with. These include the enter character
(newline) and the tab character (tab). To represent these characters in a
string, we'll use a shorthand:

"ABC\nDEF" # '\n' = newline, or pressing enter/return

"ABC\tDEF" # '\t' = tab

The \ character is a special character that indicates an escape sequence. It
is modified by the letter that follows it. These two symbols are treated as a
single character by the interpreter.

14

Triple Quotes

Early in the semester we showed how you can use triple-quotes to create
multi-line comments. You can also use them to create multi-line strings, and
you can type special characters into those strings directly!

s = """This Autumn midnight
Orion's at my window
shouting for his dog."""

is equivalent to:

s = "This Autumn midnight\nOrion's at my window\nshouting for his dog."

Haiku by Carol A. Coiffait

15

Membership Checks

We can now introduce a new operator called in (and its opposite not
in) to see whether an individual character or substring occurs in a
string. This returns a Boolean. This is very handy when you want to
check whether something occurs in a piece of text!

"e" in "Hello" # True
"W" in "CRAZY" # False
"seven" in "Four score and seven years ago" # True
"wow" not in "That's impressive" # True

16

Looping with Strings

17

Looping Over Strings

Now that we have string indexes, we can loop over the characters in a
string by visiting each index in the string in order.

If the string is s, the string's first index is 0 and the last index is
len(s)-1. Use range(len(s)) to visit all possible indexes.

s = "Hello World"
for i in range(len(s)):

print(i, s[i])

18

Algorithmic Thinking with Strings

If you need to solve a problem that involves doing something with every
character in a string, use a for loop over that string.

For example – how do we make a version of a string that doesn't include any
spaces? Make a new string by checking each character and only add each one if it
isn't a space.

s = "Wow! This is so exciting!"
result = ""
for i in range(len(s)):

if s[i] != " ": # note the space between the quotes!
result = result + s[i]

print(result) # "Wow!Thisissoexciting!"
19

Activity: Coding with Strings

You might be able to recognize a person by the types of punctuation they use in
text messages. Maybe one friend loves exclamation points while another friend
never uses them.

You do: write a function getPunctuationFrequency(text, punc) that
takes a text message (a string) and a punctuation character (another string) and
returns the frequency of how often that character appears in the text compared
to other characters - the number of times it appears over the total number of
characters.

For example, getPunctuationFrequency("That's so exciting!! Good
for you man!", "!") would return ~0.079, because exclamation marks form
3/38 = ~0.079 as a ratio of the characters in the text.

20

Try it with real data!

We can try running our analysis function on real texts!

Websites like Project Gutenberg make the text of books available online for free. You
can copy that text into a string, then run that string through the function.

Running the function through some popular classic fiction and trying out a few
different types of punctuation already gleans interesting results. For example, the
character . takes up 1.15% of text in The Great Gatsby compared to 0.82% in Pride
and Prejudice; on the other hand, the character ; takes up only 0.03% of text in The
Great Gatsby compared to 0.21% of text in Pride and Prejudice.

Combining these frequencies together can give us an interesting map of the writing
styles of different authors!

21

https://www.gutenberg.org/

Learning Goals

• Index and slice into strings to break them up into parts

• Use for loops to loop over strings by index

22

Sidebar:
When do we use len(s) vs. len(s)-1?

It can be hard to tell when to use len(s) vs. len(s)-1. What do these
two expressions really mean?

len(s) is the length of the string, the number of characters it contains.
Because the first index of a string is 0, not 1, s[len(s)] returns an
error.

On the other hand, s[len(word):] creates a slice that starts exactly
len(word) characters into the string, which could be useful.

len(s)-1 is the last index of the string. s[len(s)-1] returns the last
character of a string.

23

