
Graphs
15-110 – Friday 03/01

Announcements

• Final exam is scheduled: Tuesday, April 30, 2024 01:00pm-04:00pm
• Do not schedule travel before this date!
• Location TBD

• Next week: Spring break! Have fun!
• No classes, no office hours, no guaranteed responses on Piazza from Saturday

3/2 – Sunday 3/10

• Recommendation: start Hw4 before you leave for break
• Practicing now will be easier than practicing after you've been gone for a

week

2

Midsemester Grades

• Midsemester grades will include:
• Exercises from weeks 1-4
• Quizlets 1-3 (with your lowest score dropped)
• Check1, Hw1, Check2, Hw2
• Exam1

• Canvas shows your current grade. That grade is calculated as follows, to reflect the fact
that the final exam correlates better with exam averages than homework averages:
• Exercise average x 4%
• Quizlet average x 10%
• Check average x 12%
• Homework average x 24%
• Exam1 x 50%

• If you did poorly on Exam1 and it's dragging down your grade – don't panic! There's still
time to turn things around and improve on Exam2 and the final.
• Reach out to the professors or your TAs if you'd like to discuss strategies for improving your

learning process

3

Midsemester Survey

• Please let us know what's working and what can be improved!

• Course Survey: https://bit.ly/110-s24-mid-course
• TA Survey: https://bit.ly/110-s24-mid-tas

• To thank you for your time, you get 3 bonus points on Hw4 for completing
both surveys.
• The survey itself is anonymous; follow the link provided when you submit the first

form and that will lead you to a second non-anonymous form you can fill out for
points.

• Complete the surveys by the Hw4 deadline (Monday 3/18 noon) for bonus points.

4

https://bit.ly/110-s24-mid-course
https://bit.ly/110-s24-mid-tas

Learning Goals

• Identify core parts of graphs, including nodes, edges, neighbors,
weights, and directions.

• Use graphs implemented as dictionaries when reading and writing
simple algorithms in code

5

Graphs

6

Graphs are Like More-Connected Trees

Last time we discussed trees, which let us store data by connecting
nodes to each other to create a hierarchical structure.

Graphs are like trees – they are composed of nodes and connect those
nodes together. However, they have fewer restrictions on how nodes
can be connected. Any node can be connected to any other node in
the graph.

7

Graphs in the Real World

Graphs show up all the time in real-
world data. We can use them to
represent maps (with locations
connected by roads) and molecules
(with atoms connected by bonds).

We also commonly use graphs in
algorithms, to represent data like
social networks (with people
connected by friendships), or
recommendation engines (with
items connected if they were
purchased together).

8

Graphs are Made of Nodes and Edges

The nodes in a graph are the same
as the nodes in a tree – they hold
the values stored in the structure.

The edges of a graph are the
connections between nodes.

We say that for a node X, any
nodes that X connects to with an
edge are X's neighbors.

9

A

B

E

H

C

G

D F

E's neighbors

Edges Can Have Weights

Sometimes edges can have
weights, such as the length of a
road or the cost of a flight. Our
example graph here has weights-
the numbers next to lines.

A graph with no weights is an
unweighted graph; a graph with
weights is a weighted graph.

10

A

B

E

H

C

G

D F

9

3

2 1 7

5

2

4

Edges Can Have Directions

Edges can also be directed (from A to
B but not from B to A unless there is
another directed edge from B to A),
or undirected (go in either direction
on an edge between nodes).

The graph to the right is directed; for
example, you can only go from G to
E, not from E to G. The previous
graphs we saw were undirected.

11

A

B

E

H

C

G

D F

Technically D is F's neighbor, but F
is not D's neighbor, because you

can't go from D to F.

Activity: Recognize the Parts

Consider the graph to the right.

How many nodes does the graph have?
How many edges?
Do the edges have weights?
Are the edges directed?
What are the neighbors of node F?

12

C

A

E F

D

B

Coding with Graphs

13

Represent Graphs in Python with Dictionaries

Like trees, graphs are not implemented directly by Python. We need to
use the built-in data structures to represent them.

Our implementation for this class will use a dictionary that maps node
values to lists. This is commonly called an adjacency list.

Unlike the tree representation, graphs will not be nested dictionaries;
we'll be able to access all the node values directly. That's because
graphs aren't inherently recursive.

We'll need to slightly alter this representation based on whether or not
the edges of the graph have weights.

14

Graphs in Python – Unweighted Graphs

First, how do we represent an
unweighted graph?

The keys of the dictionary will be the
values of the nodes. Each node maps to
a list of its adjacent nodes (neighbors),
the nodes it has a direct connection
with.

On the right, we show our example
graph in its dictionary implementation.

unweightedGraph = {
 "A" : ["B", "G"],
 "B" : ["A", "C"],
 "C" : ["B", "H"],
 "D" : ["F"],
 "E" : ["G", "H"],
 "F" : ["D"],
 "G" : ["A", "E", "H"],
 "H" : ["C", "E", "G"]
 }

15

A

B

E

H

C

G

D F

Graphs in Python – Weighted Graphs

Weighted graphs have values
associated with the edges. We need to
store these values in the dictionary also.

We'll do this by changing the list of
adjacent nodes to be a 2D list. Each of
the inner lists represents a node/edge
pair, so it has two values – the adjacent
node's value and the weight of the
edge.

On the right, we show our updated
example graph in this format.

16

A

B

E

H

C

G

5 3

2
91

7

2

weightedGraph = {
 "A" : [["B", 5], ["G", 2]],
 "B" : [["A", 5], ["C", 3]],
 "C" : [["B", 3], ["H", 9]],
 "D" : [["F", 4]],
 "E" : [["G", 1], ["H", 7]],
 "F" : [["D", 4]],
 "G" : [["A", 2], ["E", 1], ["H", 2]],
 "H" : [["C", 9], ["E", 7], ["G", 2]]
 }

D F
4

Finding a Graph's Nodes

Let's look at some basic examples of programming with graphs.

To print all the nodes in a graph, just look at every key in the dictionary.

17

def printNodes(g):
 for node in g:
 print(node)

Finding a Node's Neighbors

If we want to get the neighbors of a particular node, index into that node in the
dictionary.

18

def getNeighbors(g, node):
 return g[node]

If the graph is weighted, we'll need to reconstruct the neighbor list:

def getNeighbors(g, node):
 neighbors = []
 for pair in g[node]:
 neighbors.append(pair[0])
 return neighbors

Finding a Graph's Edges

To print all the edges, you'll need to loop over each value in the neighbor list.

def printEdges(g):
 for node in g:
 for neighbor in g[node]:
 print(node + "-" + neighbor)

Note that this example is for an unweighted graph. To get neighbor values in a
weighted graph, index into neighbor[0] .

19

Finding an Edge's Weight

Finally, to find an edge's weight, index and loop to find the appropriate
pair.

20

def getEdgeWeight(g, node1, node2):
 for pair in g[node1]:
 if pair[0] == node2:
 return pair[1]

Example: Most Popular Person

Now that we have the basics, we can
start problem solving.

Let's write a function that takes a social
network as a graph and returns the
person in the network who has the
most friends.

This is just our typical find-largest-
property algorithm applied to a graph.

def findMostPopular(g):

 biggestCount = 0

 mostPopular = None

 for person in g:

 if len(g[person]) > biggestCount:

 biggestCount = len(g[person])

 mostPopular = person

 return mostPopular

21

Example: Make Invite List

Now let's say a person wants to make
more friends, so they're holding a party.
They want to invite their own friends,
but also anyone who is a friend of one
of their friends.

Now we have to loop over each of the
person's friends, to access that node's
own list of friends.

def makeInviteList(g, person):

 # start with immediate friends

 invite = g[person] + [] # break alias

 for friend in g[person]:

 # find friends-of-friends

 for theirFriend in g[friend]:

 if theirFriend not in invite and \

 theirFriend != person:

 invite.append(theirFriend)

 return invite

22

Activity: friendsInCommon(g, p1, p2)

You do: Given an unweighted graph of a
social network (like in the previous two
examples) and two nodes (people) in the
graph, return a list of the friends that those
two people have in common.

For example, in the graph shown to the
right, calling friendsInCommon on "Jon"
and "Jaime" would return the list [
"Tyrion"].

Hint: start by looping over all the friends of
the first person. Check whether any of them
are also friends of the second person and
add them to a result list if they are.

g = { "Jon" : ["Arya", "Tyrion"],

 "Tyrion" : ["Jaime", "Pod", "Jon"],

 "Arya" : ["Jon"],

 "Jaime" : ["Tyrion", "Brienne"],

 "Brienne" : ["Jaime", "Pod"],

 "Pod" : ["Tyrion", "Brienne", "Jaime"],

 "Ramsay" : []

 }

23

Learning Goals

• Identify core parts of graphs, including nodes, edges, neighbors,
weights, and directions.

• Use graphs implemented as dictionaries when reading and writing
simple algorithms in code

24

