
15-110 RecitationWeek 7
Reminders
● 03/12 Tue - Check3/HW3 revisions due (Tuesday after break)
● Reci feedback form
● Have a restful and rejuvenating break!

Overview
● Big-O Exercise
● For Loop Review
● Dictionary Review
● Tree CodeWriting
● Dictionary CodeWriting

https://forms.gle/dWgvmGvTSMbRi7rv5

Problems

BIG-O EXERCISE

Calculate the Big-O for the following examples:

Returning the last character in a string

def powersOfTwo(n): # n = n
m = 1
while m <= n:

print(m)
m *= 2

def foo(L): # len(L) = n
if L == []:

return 0
else:

L.append(L[0])
n = L.index(10)
L.pop(0)
return n

.index(), .pop() are O(n) worst
case!

#You are guaranteed L is a nxn 2D
list
def tripleLoop(L):

for i in range(20):
for row in L:

for elem in row:
print(elem)

FOR EACH LOOP REVIEW

Notes on Loops::

Problem:

Use the following code to answer the questions:

s = "15-110"

for i in range(len(s)):

print(i)

for i in s:

print(i)

What does the code print?

What is the type of i for each loop?

DICTIONARY REVIEW

Notes on dictionaries:

Here is an example of a type of problem that uses dictionaries. Read through the problem statement
and solution and note the key points of the code.

Problem:
Kelly’s Bakery is doing an inventory of their freshly baked goods. This morning, they baked new items and now
they need to update their inventory to represent these items. You are given a dictionary that represents the
inventory at Kelly’s Bakery, which maps the name of the item to howmany items of that baked good are
available. Write the function updateInventory(d, newItems) that takes the current inventory and a new
dictionary called newItems and updates it accordingly. The function should also handle the case that there is an
item in newItems that doesn’t exist in d.

Solution:
def updateInventory(d, newItems):
for item in newItems:

if item in d:
d[item] += newItems[item]

else:
d[item] = newItems[item]

return 33

TREE CODEWRITING

Write the function addEvenLeaves(t) that takes in a dictionary representation of a tree (you can assume
it will have at least 1 node) and returns a sum of only the even values held by leaves.

def addEvenLeaves(tree):

base case: leaf node

if ________________ and ______________:

check if leaf’s value is even

if ______________:

returns the leaves value

return ______________

else:

what should you return if the leaf isn’t even?

return ____

else:

value = 0

recursive case if left subtree is not None

if ____________:

value += _____________________

recursive case if right subtree is not None

if ____________:

value += _____________________

return value

DICTIONARY CODEWRITING

Given a dictionary that maps teams like CMU, Pitt, OSU, PennState, and another unspeci�ed number of
football teams, to the number of wins and losses they have (represented as [wins, losses]), and an integer
representing the minimum amount of games to be considered, we want to return the team with the best win
percentage and that has played enough games. There will be no ties. For example,

bestTeam({ "CMU" : [1, 10], "Pitt" : [7, 10], "OSU" : [10, 6], "PennState" : [2, 1] }, 5) returns “OSU”

def bestTeam(winsLosses, minGames):

bestTeam = ____________

bestRatio = ___________

for team in winsLosses:

wins = ___________________

losses = __________________

gamesPlayed = _________ + _________

#check if played enough games

if _____________ >= minGames:

winRatio = ____________ / gamesPlayed

if _____________ > bestRatio:

bestRatio = ________________

bestTeam = _________________

return _____________

