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Quizlet
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Announcements

• Hw4 due Monday
• If you haven't started yet, start now!!
• Don't forget to fill out the midsemester surveys as well!
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Learning Goals

• Identify brute force approaches to common problems that run in O(n!) or 
O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset 
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are 
important

• Identify whether an algorithm is tractable or intractable, and whether it is 
in P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial 
time
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Big Idea: What is Efficient?

As we wrap up the unit on data structures and efficiency, we still need 
to answer a big question: can all algorithms be made efficient? And, 
importantly, what does it mean to be efficient?

To answer these questions, we'll consider a collection of important 
computational problems. While considering these problems, ask 
yourself: how efficient are these solutions? Could we make them 
better?
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Computationally Difficult 
Problems
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Example: Travelling Salesperson Problem

First, consider the Travelling 
Salesperson problem.

The program is given a graph that 
represents a map – nodes are cities, 
edges are distances between cities.

The goal is to find the shortest possible 
route that visits every city, then returns 
home.

Practical application: plan a route for a 
postal worker.
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One Solution: Check All Paths

Intuitive algorithm: try every possible 
route from the starting city across all the 
others, then choose the shortest route of 
them all.

For example, starting from Pittsburgh in 
the graph to the right we have three 
possible first-stops. Each of those has two 
second-stop options, leading to six total 
possibilities.

When we compare the routes, the shortest 
route is PIT->DC->BALT->PHIL->PIT (or its 
reverse, PIT->PHIL->BALT->DC->PIT).
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Brute Force Algorithms

This type of solution approach is called a brute force approach. Brute 
force algorithms are simple: you just generate every possible solution 
and check each of the generated solutions to see if any of them work 
based on the problem's constraints.

Brute force algorithms are easy to understand, implement, and test. 
They also apply to a wide range of problems, which makes them useful.

However, brute force algorithms have one major drawback: their 
efficiency.
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Brute Force Efficiency

Consider the efficiency of our Travelling Salesperson algorithm. Let's say that generating a path 
of n stops counts as one action. How many possible paths are there in the worst case?

The worst case is a fully-connected graph (like the previous one). We have n-1 possible first 
stops on the route. For each of those routes, there are n-2 possible second stops, or (n-1)*(n-2) 
routes so far. Then there are n-3 third stops per route, etc... until there is only one city left for 
the last stop.

This means that the number of possible routes is (n-1) * (n-2) * (n-3) * ... * 1. It's O(n!). That's 
really inefficient!

There are a lot of problems in computer science that share this property- we can solve them, 
but the intuitive algorithm takes a long time. Let's go through some examples.
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Example: Puzzle Solving

Say we want to solve a basic puzzle by 
putting together square pieces (like the 
ones shown to the right) so that any 
two pieces that are touching each other 
make a figure with a head and feet of 
the same color.

To make this even simpler, let's make a 
rule that pieces cannot be rotated and 
the final result must be a m x m square.

Here's our question: given a set of 
pieces, is it possible to make a solution 
that follows these rules?
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Brute Force on Puzzle Solving

We can again use brute force to 
solve the puzzle problem, just like 
we did with Travelling 
Salesperson. We can do this by 
trying all possible pieces for each 
location.

In the example to the right there 
are 9 options for the first position, 
8 for the second, 7 for the third, 
etc.... it's O(n!) time again.
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9 choices 8 choices 7 choices

6 choices 5 choices 4 choices

3 choices 2 choices 1 choice



O(n!) is Really Bad

It turns out that O(n!) is a really bad runtime. For example, let's assume that 
it takes 1 millisecond (1/1000th of a second) to set up a specific ordering of 
pieces of a puzzle and check if it's correct.

If we have 9 pieces (like in our example before), it will take 6.048 minutes to 
solve the puzzle.

If we increase the size to a 4x4 puzzle (16 pieces), it will take 663.46 years!

O(n!) is awful. Let's see if we can find problems that do a bit better.
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Example: Subset Sum

In the problem Subset Sum we are given a list 
of numbers and a target number, x. We want 
to determine if there's a subset of the list that 
sums to x.

Brute force solution: generate all possible 
subsets, see if any of them sum to x.

How do we generate all subsets? Use 
recursion! If we have all four subsets of the list 
[2, 3] we can use them to create all 8 subsets 
of [1, 2, 3]. For each subset, make one version 
that includes 1, and one version that doesn't.

We double the number of subsets with each 
new number that is added- this is O(2n).

Subsets of [1, 2, 3]:
• []
• [1] 

• [2]
• [1, 2]

• [3]
• [1, 3]

• [2, 3] 
• [1, 2, 3]
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Subsets of [2, 3]:

• []
• [2]
• [3]
• [2, 3]



Example: Boolean Satisfiability

A similar problem commonly encountered 
in computer science, called Boolean 
Satisfiability, asks: for a given circuit with n 
inputs (X1 to Xn), is there a set of 
assignments of Xi to 0 or 1 that makes the 
whole circuit output 1?

Instead of generating all possible subsets, 
we generate all possible combinations of 
input values (like generating a truth table!).

This also doubles every time we add a new 
input as we must try all possible 
combinations with the input set to 0, then 
set to 1. It's still O(2n).

Inputs for 2 elements

• 0, 0
• 0, 1
• 1, 0
• 1, 1
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Inputs for 3 elements

• 0, 0, 0
• 0, 0, 1

• 0, 1, 0
• 0, 1, 1

• 1, 0, 0
• 1, 0, 1

• 1, 1, 0
• 1, 1, 1



Real-life Example: Exam Scheduling

Here's one final example: scheduling final exams. 
Given a list of classes, a dictionary mapping 
students to their classes, and a list of timeslots over 
the period of a week, generate a schedule that fits 
within the period and results in no student having 
two exams in the same slot.

We can generate all possible schedules using a 
similar approach to subset sum. Then we just need 
to look for one schedule that has no conflicts by 
checking every student. However, every time we 
add a new class we need to try adding it to every 
possible schedule in every possible timeslot. 

If we say there are k timeslots (where k is some 
constant number) and n classes, we turn one 
schedule into k different schedules for every new 
class added. This is O(kn)! 16



O(2n) and O(kn) are Still Really Slow

O(2n) is a bit better than O(n!), but not that much better. Let's say we want 
to solve the subset sum problem and it again takes us 1 millisecond to 
generate a specific subset and see if it is equal to the target.

If n = 10, we find the solution in 1.024 seconds. Much better!

But if n = 20, we find the solution in 17.48 minutes...

And if n = 30, it will take us 12.43 days. By the time n = 40, it takes 35 years.

O(2n) is not as bad as O(n!), but it's still really bad.
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Tractability

This leads us to a new concept: tractability. A 
problem is said to be tractable if it has a 
reasonably efficient runtime so that we can use 
it for practical input sizes.

We say that a runtime is reasonable if it can be 
expressed as a polynomial equation. This 
means an equation of the form: 
ckxk + ck-1xk-1 + ... + c1x + c0
where x is a variable and ci & k are constants.

O(1), O(log n), O(n), O(n2), and O(nk) are all 
tractable. O(2n), O(kn), and O(n!) are not- they're 
intractable. 

We can see the difference in growth quickly 
using the graph to the right.
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intractable tractable

Caveat: logarithms are tractable even though they 
aren't polynomial, because they're faster than O(n)!



Activity: Identify the Solution Runtime

If you consider how a brute-force solution generates solutions, and 
how that algorithm would be affected by increasing the input size, you 
can often determine whether the solution will be tractable or 
intractable without digging deeply into the exact runtime.

You do:
• solve a nxn Sudoku puzzle by trying every possible combination of 

numbers. Is that tractable or intractable?
• check every pair of elements in a n-element list to see if there are any 

duplicates. Is that tractable or intractable?
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Complexity Classes

20



Goal: Find Tractable Solutions

Now we know just how bad the brute-force solutions to this set of 
problems are when it comes to efficiency. Maybe we can design a 
different algorithm that doesn't require us to generate every possible 
answer.

That will be our goal for the rest of the lecture: to see if we can find a 
tractable solution to these hard problems.
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Designing New Solutions is Hard!

Discuss: when we talked about the brute-force solutions to the 
previous problems, did you think of a way to solve the problems a lot 
faster?

You might have come up with ways to shave some time off the 
algorithms, but most likely your new solutions are still intractable. 
Coming up with fast solutions to these problems is hard!

Until now, we've only discussed how long it takes to find the solution to 
a problem. Let's take a different approach.
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Magical Schedule-Making Box

Suppose a magical black box descends 
from the sky onto campus one day.

Someone discovers that if you feed the 
box a list of all the classes in a semester, 
all the final exam timeslots, and every 
student's schedule, the box will spit out 
a final exam schedule for CMU.

If CMU has n classes, how long would it 
take us to check if this schedule has 
any conflicts in it?
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Verifying a Final Exam Schedule

For every student, we need to go through all pairs of their classes to see if 
any of their classes are in the same timeslot. Each student is likely enrolled in 
no more than 5 classes, so that's a constant number of checks – 10.

How many students are there? We can probably find a constant relation 
between the number of classes in a semester and the number of students 
enrolled. Let's say if there are n classes, there are 6*n students.

That means that overall we have to do students*conflict-checks = (6*n)*10 
work. That's 60n, which is O(n). Verifying the solution is tractable!
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Complexity Classes

Now that we've talked about both solving and verifying problems, we can 
start putting problems into different groups.

We call these groups complexity classes. These are collections of problems 
that have similar efficiency. Specifically, we say that every algorithm in a 
certain complexity class is bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that only 
includes algorithms which run in O(n) time or faster. This would also include 
O(log n) and O(1).
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Complexity Class P

First we define the complexity class P 
to be the set of problems that we 
know can be solved in polynomial 
time. Recall that an algorithm is 
polynomial if it can be expressed as: 
ckxk + ck-1xk-1 + ... + c1x + c0

Our earlier examples (subset sum, 
puzzle solving, exam scheduling) 
don't fall into this category yet. But 
plenty of other algorithms do- linear 
search, summing a list, etc.
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P

linear search

summing a list



Complexity Class NP

Next we define the complexity class NP 
to be the set of problems that can be 
verified in polynomial time.

This includes all problems in P- if you 
can solve something in polynomial time, 
you can check it as well.

It also includes most of the problems we 
discussed before! We already showed 
that we can check exam scheduling in 
linear time. We can also check subset 
sum, Boolean satisfiability, and puzzle 
solving this way.
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All problems

Not all Problems are in P or NP

Some problems are so difficult we can't 
even verify them in polynomial time.

Travelling Salesperson is an example of 
this. If we're given a solution, we can't 
verify that it's the best path- it's just 
one possible path that exists. In general, 
trying to find the 'best' solution takes a 
long time to verify.

We can turn Travelling Salesperson into 
an NP problem by changing the prompt: 
instead of finding the best path, just try 
to find a path that is less than X total 
distance for some number X. This is easy 
to verify.
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P vs NP
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Big Question: Does P = NP?

Here's our big idea for the day. 
Wouldn't it be nice if the set of 
problems P was the same as the set 
of problems NP?

If this was true, we could find an 
algorithm that would put together 
CMU's final exam schedule in a day 
instead of waiting half a semester to 
find out when exams will happen. 
We'd be able to solve a lot of hard 
problems really quickly, without 
having to think hard about clever 
new approaches!
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Does P = NP? We Don't Know.

Whether or not P = NP is a core question in the field of computer 
science, but it's still unsolved.

The first person who proves whether or not P = NP will win a million 
dollars, but no one has proved it yet...
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https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems


Proving P != NP

Let's assume that P != NP. How would we prove this?

You'd need to definitively prove that a problem in NP exists that cannot 
be solved in polynomial time. But how can we show that it's impossible 
to come up with a clever new algorithm?

This is tricky!
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Proving P = NP

Let's assume P = NP. How would we prove this?

You need to show that every problem in NP can be solved in 
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP that 
are related to each other.
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Transforming Problems

Consider subset sum and Boolean 
satisfiability. We can transform subset 
sum into satisfiability. We just need to 
make a circuit that uses each value in 
the list as an input (0 if it isn't included, 
1 if it is) and make the circuit output 1 if 
the included values sum to the target. 

In fact, this mapping can be done in 
polynomial time. This means that if we 
can find a tractable solution to Boolean 
satisfiability, we can also use it to make 
a tractable solution to subset sum.

34

Find a subset of [4, 2, 7, 13] that sums to 8

Set the inputs so that the circuit outputs 1

Circuit that checks 
if sum = 8



Useful NP Problems

Computer scientists have identified a set of problems that have this problem-
transformation capacity for all NP problems. If we can find a tractable 
solution to one of them, we can make all problems in NP tractable. That will 
mean that P = NP!

In fact, if you use the limited version of the Travelling Salesperson problem, 
all the problems we discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll prove       
P = NP and will become rich and famous.

35



Possible Outcomes

What happens if we prove P = NP?

We'll be able to solve a lot of hard 
problems very quickly. NP problems 
show up everywhere, so nearly 
everything in the world will get 
radically faster!

On the other hand, this might also 
wreck how modern security and 
encryption is implemented (as it will 
get easier to break cryptography).

What happens if we prove P != NP?

Not much; we'll still be in our current 
situation. But a lot of computer 
scientists can turn their focus to 
other problems.

Most people think P != NP, but we 
don't know how to prove it.
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Heuristics
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Speeding Up Slow Algorithms

There are lots of useful problems that fall into the NP class. How can we 
solve these problems practically when they're intractable?

Instead of trying to find the ideal solution to a problem, we can change our 
standards to say we only need to find a good-enough solution. For example:
• In exam scheduling, maybe it's okay if there's a small number of conflicts 

that affect < 1% of the student body
• In subset sum, maybe it's okay if we find a subset that is almost equal to 

the target, instead of exactly equal

When we're willing to compromise on optimality or accuracy, or put other 
restrictions on the data, we can use heuristics to speed up the process a 
great deal.
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Heuristics Provide Approximate Answers

A heuristic is a search technique used by an algorithm to find a good-
enough solution to a problem. Heuristics may not find the best answer 
to an NP problem, but they often achieve good results.

A heuristic can generate scores to rank potential next steps that the 
algorithm can take at each decision point. By choosing the highest-
scored next step, the algorithm is more likely to find a working solution 
quickly.
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Heuristics Example: Travelling Salesperson

For the Travelling Salesperson problem, 
we could generate a heuristic that ranks 
next-possible paths based on their length. 
The algorithm can always choose the next 
city to visit by trying the shorter paths 
first.

With this approach, we can generate a 
pretty decent path in polynomial time. 
This path might not be the best path, but 
it's likely better than a random path.

40



Example: Applying a Heuristic

Let's try applying a heuristic to subset sum. 
Order all the values in the list from largest 
to smallest. Always try adding the largest 
available value to the subset first.

We'll simplify the problem further by 
assuming all values in the list are positive, 
so as soon as the subset is larger than the 
target, we can backtrack and try something 
else.

We'll also sacrifice some optimality by 
accepting any answer that comes within 2 
of our desired target value.

How many subsets do we need to try to 
determine if there's a subset of [13, 14, 7, 
10, 7, 16, 2, 8, 3, 5] that sums to ~25?

Sort the list: [16, 14, 13, 10, 8, 7, 7, 5, 3, 2]

[16] – too small
[16, 14] – too big, backtrack!
[16, 13] – still too big...
[16, 10] – this is 26, it works!

We missed the optimal solution – [16, 7, 2] 
would have been perfect. But we found [16, 
10] much faster.

41



Sidebar: Additional Watching

Want to learn more about these topics? Check out the following videos 
recommended by prior students!

P vs. NP and the Computational Complexity Zoo: 
https://www.youtube.com/watch?v=YX40hbAHx3s

P vs. NP - The Biggest Unsolved Problem in Computer Science: 
https://www.youtube.com/watch?v=EHp4FPyajKQ
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Learning Goals

• Identify brute force approaches to common problems that run in O(n!) or 
O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset 
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are 
important

• Identify whether an algorithm is tractable or intractable, and whether it is 
in P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial 
time
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