
Tractability
15-110 – Wednesday 03/13

Quizlet

2

Announcements

• Hw4 due Monday
• If you haven't started yet, start now!!
• Don't forget to fill out the midsemester surveys as well!

3

Learning Goals

• Identify brute force approaches to common problems that run in O(n!) or
O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are
important

• Identify whether an algorithm is tractable or intractable, and whether it is
in P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial
time

4

Big Idea: What is Efficient?

As we wrap up the unit on data structures and efficiency, we still need
to answer a big question: can all algorithms be made efficient? And,
importantly, what does it mean to be efficient?

To answer these questions, we'll consider a collection of important
computational problems. While considering these problems, ask
yourself: how efficient are these solutions? Could we make them
better?

5

Computationally Difficult
Problems

6

Example: Travelling Salesperson Problem

First, consider the Travelling
Salesperson problem.

The program is given a graph that
represents a map – nodes are cities,
edges are distances between cities.

The goal is to find the shortest possible
route that visits every city, then returns
home.

Practical application: plan a route for a
postal worker.

7

One Solution: Check All Paths

Intuitive algorithm: try every possible
route from the starting city across all the
others, then choose the shortest route of
them all.

For example, starting from Pittsburgh in
the graph to the right we have three
possible first-stops. Each of those has two
second-stop options, leading to six total
possibilities.

When we compare the routes, the shortest
route is PIT->DC->BALT->PHIL->PIT (or its
reverse, PIT->PHIL->BALT->DC->PIT).

8

Brute Force Algorithms

This type of solution approach is called a brute force approach. Brute
force algorithms are simple: you just generate every possible solution
and check each of the generated solutions to see if any of them work
based on the problem's constraints.

Brute force algorithms are easy to understand, implement, and test.
They also apply to a wide range of problems, which makes them useful.

However, brute force algorithms have one major drawback: their
efficiency.

9

Brute Force Efficiency

Consider the efficiency of our Travelling Salesperson algorithm. Let's say that generating a path
of n stops counts as one action. How many possible paths are there in the worst case?

The worst case is a fully-connected graph (like the previous one). We have n-1 possible first
stops on the route. For each of those routes, there are n-2 possible second stops, or (n-1)*(n-2)
routes so far. Then there are n-3 third stops per route, etc... until there is only one city left for
the last stop.

This means that the number of possible routes is (n-1) * (n-2) * (n-3) * ... * 1. It's O(n!). That's
really inefficient!

There are a lot of problems in computer science that share this property- we can solve them,
but the intuitive algorithm takes a long time. Let's go through some examples.

10

Example: Puzzle Solving

Say we want to solve a basic puzzle by
putting together square pieces (like the
ones shown to the right) so that any
two pieces that are touching each other
make a figure with a head and feet of
the same color.

To make this even simpler, let's make a
rule that pieces cannot be rotated and
the final result must be a m x m square.

Here's our question: given a set of
pieces, is it possible to make a solution
that follows these rules?

11

Brute Force on Puzzle Solving

We can again use brute force to
solve the puzzle problem, just like
we did with Travelling
Salesperson. We can do this by
trying all possible pieces for each
location.

In the example to the right there
are 9 options for the first position,
8 for the second, 7 for the third,
etc.... it's O(n!) time again.

12

9 choices 8 choices 7 choices

6 choices 5 choices 4 choices

3 choices 2 choices 1 choice

O(n!) is Really Bad

It turns out that O(n!) is a really bad runtime. For example, let's assume that
it takes 1 millisecond (1/1000th of a second) to set up a specific ordering of
pieces of a puzzle and check if it's correct.

If we have 9 pieces (like in our example before), it will take 6.048 minutes to
solve the puzzle.

If we increase the size to a 4x4 puzzle (16 pieces), it will take 663.46 years!

O(n!) is awful. Let's see if we can find problems that do a bit better.

13

Example: Subset Sum

In the problem Subset Sum we are given a list
of numbers and a target number, x. We want
to determine if there's a subset of the list that
sums to x.

Brute force solution: generate all possible
subsets, see if any of them sum to x.

How do we generate all subsets? Use
recursion! If we have all four subsets of the list
[2, 3] we can use them to create all 8 subsets
of [1, 2, 3]. For each subset, make one version
that includes 1, and one version that doesn't.

We double the number of subsets with each
new number that is added- this is O(2n).

Subsets of [1, 2, 3]:
• []
• [1]

• [2]
• [1, 2]

• [3]
• [1, 3]

• [2, 3]
• [1, 2, 3]

14

Subsets of [2, 3]:

• []
• [2]
• [3]
• [2, 3]

Example: Boolean Satisfiability

A similar problem commonly encountered
in computer science, called Boolean
Satisfiability, asks: for a given circuit with n
inputs (X1 to Xn), is there a set of
assignments of Xi to 0 or 1 that makes the
whole circuit output 1?

Instead of generating all possible subsets,
we generate all possible combinations of
input values (like generating a truth table!).

This also doubles every time we add a new
input as we must try all possible
combinations with the input set to 0, then
set to 1. It's still O(2n).

Inputs for 2 elements

• 0, 0
• 0, 1
• 1, 0
• 1, 1

15

Inputs for 3 elements

• 0, 0, 0
• 0, 0, 1

• 0, 1, 0
• 0, 1, 1

• 1, 0, 0
• 1, 0, 1

• 1, 1, 0
• 1, 1, 1

Real-life Example: Exam Scheduling

Here's one final example: scheduling final exams.
Given a list of classes, a dictionary mapping
students to their classes, and a list of timeslots over
the period of a week, generate a schedule that fits
within the period and results in no student having
two exams in the same slot.

We can generate all possible schedules using a
similar approach to subset sum. Then we just need
to look for one schedule that has no conflicts by
checking every student. However, every time we
add a new class we need to try adding it to every
possible schedule in every possible timeslot.

If we say there are k timeslots (where k is some
constant number) and n classes, we turn one
schedule into k different schedules for every new
class added. This is O(kn)! 16

O(2n) and O(kn) are Still Really Slow

O(2n) is a bit better than O(n!), but not that much better. Let's say we want
to solve the subset sum problem and it again takes us 1 millisecond to
generate a specific subset and see if it is equal to the target.

If n = 10, we find the solution in 1.024 seconds. Much better!

But if n = 20, we find the solution in 17.48 minutes...

And if n = 30, it will take us 12.43 days. By the time n = 40, it takes 35 years.

O(2n) is not as bad as O(n!), but it's still really bad.

17

Tractability

This leads us to a new concept: tractability. A
problem is said to be tractable if it has a
reasonably efficient runtime so that we can use
it for practical input sizes.

We say that a runtime is reasonable if it can be
expressed as a polynomial equation. This
means an equation of the form:
ckxk + ck-1xk-1 + ... + c1x + c0
where x is a variable and ci & k are constants.

O(1), O(log n), O(n), O(n2), and O(nk) are all
tractable. O(2n), O(kn), and O(n!) are not- they're
intractable.

We can see the difference in growth quickly
using the graph to the right.

18

intractable tractable

Caveat: logarithms are tractable even though they
aren't polynomial, because they're faster than O(n)!

Activity: Identify the Solution Runtime

If you consider how a brute-force solution generates solutions, and
how that algorithm would be affected by increasing the input size, you
can often determine whether the solution will be tractable or
intractable without digging deeply into the exact runtime.

You do:
• solve a nxn Sudoku puzzle by trying every possible combination of

numbers. Is that tractable or intractable?
• check every pair of elements in a n-element list to see if there are any

duplicates. Is that tractable or intractable?

19

Complexity Classes

20

Goal: Find Tractable Solutions

Now we know just how bad the brute-force solutions to this set of
problems are when it comes to efficiency. Maybe we can design a
different algorithm that doesn't require us to generate every possible
answer.

That will be our goal for the rest of the lecture: to see if we can find a
tractable solution to these hard problems.

21

Designing New Solutions is Hard!

Discuss: when we talked about the brute-force solutions to the
previous problems, did you think of a way to solve the problems a lot
faster?

You might have come up with ways to shave some time off the
algorithms, but most likely your new solutions are still intractable.
Coming up with fast solutions to these problems is hard!

Until now, we've only discussed how long it takes to find the solution to
a problem. Let's take a different approach.

22

Magical Schedule-Making Box

Suppose a magical black box descends
from the sky onto campus one day.

Someone discovers that if you feed the
box a list of all the classes in a semester,
all the final exam timeslots, and every
student's schedule, the box will spit out
a final exam schedule for CMU.

If CMU has n classes, how long would it
take us to check if this schedule has
any conflicts in it?

23

Verifying a Final Exam Schedule

For every student, we need to go through all pairs of their classes to see if
any of their classes are in the same timeslot. Each student is likely enrolled in
no more than 5 classes, so that's a constant number of checks – 10.

How many students are there? We can probably find a constant relation
between the number of classes in a semester and the number of students
enrolled. Let's say if there are n classes, there are 6*n students.

That means that overall we have to do students*conflict-checks = (6*n)*10
work. That's 60n, which is O(n). Verifying the solution is tractable!

24

Complexity Classes

Now that we've talked about both solving and verifying problems, we can
start putting problems into different groups.

We call these groups complexity classes. These are collections of problems
that have similar efficiency. Specifically, we say that every algorithm in a
certain complexity class is bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that only
includes algorithms which run in O(n) time or faster. This would also include
O(log n) and O(1).

25

Complexity Class P

First we define the complexity class P
to be the set of problems that we
know can be solved in polynomial
time. Recall that an algorithm is
polynomial if it can be expressed as:
ckxk + ck-1xk-1 + ... + c1x + c0

Our earlier examples (subset sum,
puzzle solving, exam scheduling)
don't fall into this category yet. But
plenty of other algorithms do- linear
search, summing a list, etc.

26

P

linear search

summing a list

Complexity Class NP

Next we define the complexity class NP
to be the set of problems that can be
verified in polynomial time.

This includes all problems in P- if you
can solve something in polynomial time,
you can check it as well.

It also includes most of the problems we
discussed before! We already showed
that we can check exam scheduling in
linear time. We can also check subset
sum, Boolean satisfiability, and puzzle
solving this way.

27

NP

P

linear search

summing a list

subset sum

Boolean
satisfiability

puzzle solving

exam
scheduling

All problems

Not all Problems are in P or NP

Some problems are so difficult we can't
even verify them in polynomial time.

Travelling Salesperson is an example of
this. If we're given a solution, we can't
verify that it's the best path- it's just
one possible path that exists. In general,
trying to find the 'best' solution takes a
long time to verify.

We can turn Travelling Salesperson into
an NP problem by changing the prompt:
instead of finding the best path, just try
to find a path that is less than X total
distance for some number X. This is easy
to verify.

28

NP

P

linear search

summing a list

subset sum

Boolean
satisfiability

puzzle solving

Travelling
Salesperson

Less-Than-X
Travelling

Salesperson

exam
scheduling

P vs NP

29

Big Question: Does P = NP?

Here's our big idea for the day.
Wouldn't it be nice if the set of
problems P was the same as the set
of problems NP?

If this was true, we could find an
algorithm that would put together
CMU's final exam schedule in a day
instead of waiting half a semester to
find out when exams will happen.
We'd be able to solve a lot of hard
problems really quickly, without
having to think hard about clever
new approaches!

30

All problems

linear search

selection sort

subset sum

Boolean
satisfiability

puzzle solving

Travelling
Salesperson

Less-Than-X
Travelling

Salesperson

exam
scheduling

NP

P

P and NP ?

Does P = NP? We Don't Know.

Whether or not P = NP is a core question in the field of computer
science, but it's still unsolved.

The first person who proves whether or not P = NP will win a million
dollars, but no one has proved it yet...

31

https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems

Proving P != NP

Let's assume that P != NP. How would we prove this?

You'd need to definitively prove that a problem in NP exists that cannot
be solved in polynomial time. But how can we show that it's impossible
to come up with a clever new algorithm?

This is tricky!

32

Proving P = NP

Let's assume P = NP. How would we prove this?

You need to show that every problem in NP can be solved in
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP that
are related to each other.

33

Transforming Problems

Consider subset sum and Boolean
satisfiability. We can transform subset
sum into satisfiability. We just need to
make a circuit that uses each value in
the list as an input (0 if it isn't included,
1 if it is) and make the circuit output 1 if
the included values sum to the target.

In fact, this mapping can be done in
polynomial time. This means that if we
can find a tractable solution to Boolean
satisfiability, we can also use it to make
a tractable solution to subset sum.

34

Find a subset of [4, 2, 7, 13] that sums to 8

Set the inputs so that the circuit outputs 1

Circuit that checks
if sum = 8

Useful NP Problems

Computer scientists have identified a set of problems that have this problem-
transformation capacity for all NP problems. If we can find a tractable
solution to one of them, we can make all problems in NP tractable. That will
mean that P = NP!

In fact, if you use the limited version of the Travelling Salesperson problem,
all the problems we discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll prove
P = NP and will become rich and famous.

35

Possible Outcomes

What happens if we prove P = NP?

We'll be able to solve a lot of hard
problems very quickly. NP problems
show up everywhere, so nearly
everything in the world will get
radically faster!

On the other hand, this might also
wreck how modern security and
encryption is implemented (as it will
get easier to break cryptography).

What happens if we prove P != NP?

Not much; we'll still be in our current
situation. But a lot of computer
scientists can turn their focus to
other problems.

Most people think P != NP, but we
don't know how to prove it.

36

Heuristics

37

Speeding Up Slow Algorithms

There are lots of useful problems that fall into the NP class. How can we
solve these problems practically when they're intractable?

Instead of trying to find the ideal solution to a problem, we can change our
standards to say we only need to find a good-enough solution. For example:
• In exam scheduling, maybe it's okay if there's a small number of conflicts

that affect < 1% of the student body
• In subset sum, maybe it's okay if we find a subset that is almost equal to

the target, instead of exactly equal

When we're willing to compromise on optimality or accuracy, or put other
restrictions on the data, we can use heuristics to speed up the process a
great deal.

38

Heuristics Provide Approximate Answers

A heuristic is a search technique used by an algorithm to find a good-
enough solution to a problem. Heuristics may not find the best answer
to an NP problem, but they often achieve good results.

A heuristic can generate scores to rank potential next steps that the
algorithm can take at each decision point. By choosing the highest-
scored next step, the algorithm is more likely to find a working solution
quickly.

39

Heuristics Example: Travelling Salesperson

For the Travelling Salesperson problem,
we could generate a heuristic that ranks
next-possible paths based on their length.
The algorithm can always choose the next
city to visit by trying the shorter paths
first.

With this approach, we can generate a
pretty decent path in polynomial time.
This path might not be the best path, but
it's likely better than a random path.

40

Example: Applying a Heuristic

Let's try applying a heuristic to subset sum.
Order all the values in the list from largest
to smallest. Always try adding the largest
available value to the subset first.

We'll simplify the problem further by
assuming all values in the list are positive,
so as soon as the subset is larger than the
target, we can backtrack and try something
else.

We'll also sacrifice some optimality by
accepting any answer that comes within 2
of our desired target value.

How many subsets do we need to try to
determine if there's a subset of [13, 14, 7,
10, 7, 16, 2, 8, 3, 5] that sums to ~25?

Sort the list: [16, 14, 13, 10, 8, 7, 7, 5, 3, 2]

[16] – too small
[16, 14] – too big, backtrack!
[16, 13] – still too big...
[16, 10] – this is 26, it works!

We missed the optimal solution – [16, 7, 2]
would have been perfect. But we found [16,
10] much faster.

41

Sidebar: Additional Watching

Want to learn more about these topics? Check out the following videos
recommended by prior students!

P vs. NP and the Computational Complexity Zoo:
https://www.youtube.com/watch?v=YX40hbAHx3s

P vs. NP - The Biggest Unsolved Problem in Computer Science:
https://www.youtube.com/watch?v=EHp4FPyajKQ

42

https://www.youtube.com/watch?v=YX40hbAHx3s
https://www.youtube.com/watch?v=EHp4FPyajKQ

Learning Goals

• Identify brute force approaches to common problems that run in O(n!) or
O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are
important

• Identify whether an algorithm is tractable or intractable, and whether it is
in P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial
time

43

