
General Debugging Practices

1 Intro

You may have been told that programming is the process of writing code that performs a task. That's

not quite the case. Programming is the process of writing some code that attempts to perform a

task, then discovering that your code doesn't work, �guring out why, �xing it, discovering that it's

broken in some other way, �guring out why, �xing that problem, and so on.

It is normal that your code doesn't work at �rst and you should expect it . One of the

important things we hope to teach you in 122 is how to debug your code. Here are some steps to

take to get started down the debugging path, which is where the majority of a programmer's time

is spent. Please try these things before posting on Ed or asking for help at o�ce hours.

2 My Code Doesn't Work

First, identify what you expected to happen, and what actually happened. (example: I expected f
to return 10, but instead it returned 13). Once you have identi�ed this failure, your next goal is to

�nd the "smallest possible" test case that exhibits this same failure.

What do we mean by �smallest possible�? The end goal is that the least number of lines of

code run before the failure. If your function takes in an array of values, generally speaking this will

happen when the array contains as few numbers as possible. For an arbitrary data structure, this

generally means the simplest data structure possible. Be aware that sometimes the behavior of a

function actually ends up being simpler when you pass in a more complex data structure than when

you pass in a simpler one.

There is no fool-proof way to identify the smallest possible test case � generally speaking it is

simply a guess-and-check process. However, trying to remove parts of the data structure until you

can remove no more is a useful heuristic.

Once you have reduced your test case to the smallest possible, your next goal is to narrow down

the problem by continuing the �I expected... but instead...� process for smaller and smaller sections

of code. One great way to do this is to trace through your test case on paper, try to �gure out

where your paper function diverges from the one you implemented.

One way to determine where your paper function diverges from the one you implemented is by

adding print statements. If you're unsure on where the best place to put print statements is, it

may be worth reading the Debugging with Print Statements guide. As a rule of thumb, good places

to put print statements are:

• at the beginning of the function (especially if it is recursive!)

• right before a function returns

• inside a loop so that it prints each iteration

Another way to determine where your paper function diverges from the one you implemented

is by adding assertions. The advantage of assertions over print statements is that once you have

�xed your bug, you can leave those asserts in, while it is often a good idea to clean up debugging

prints once you �gure out a bug. The Debugging with Contracts guide goes more in depth on

1

https://edstem.org/us/courses/40653/discussion/
ghost:print
ghost:contracts


techniques for using assertions and contracts for debugging! As a good rule of thumb, generally

speaking assertions can be put anywhere you can put a print statement.

A third way to determine where your paper function diverges from the one you implemented

is by commenting out sections of code. This can be useful to help reduce the mental load of

trying to keep in mind many moving pieces (when only some are necessary).

2.1 Additional Things to do

While you are debugging your code, make sure that you fully read and try to understand any error

messages that appear. Error messages are one of your best windows into what is going on so take

the time to read them! If you are unsure as to what an error message is saying, feel free to post on

Ed or ask a TA at o�ce hours!

Furthermore, a great tool for debugging is Talking through the code with yourself. Although it

seems a bit silly at �rst, sometimes just walking through the code with yourself is enough to see an

obvious �aw. While you are doing this, go through the writeup and make sure you fully understand

the requirements and that you are meeting the requirements.

Lastly, if you have been working on a bug for a long time, take a break. Step away from the

problem for an hour or two. Go eat, go take a walk through Schenley park and most importantly,

don't think about the problem. When you come back you will be in a much better position to �gure

out your bug.

3 My code fails on autolab

There are really 3 steps you should follow in order to go from code failing on autolab to code being

�xed. These are as follows:

1. Read the Autolab error message. These often provide helpful messages or hints. Read through

the Interpreting Autolab Output guide if you are unsure how to interpret the error message

2. Write local test cases until one fails. Read through the Writing a Test File guide if you are

unsure about how to write test cases.

3. Congratulations! You now have a failing test case! This is (seriously) a good thing � go to

Section My Code Doesn't Work and start from there.

4 How do I test my code

A great tool for �guring out how to test your code is the Writing a Test File guide. A short list of

some important and useful concepts in that guide for how to write good test cases is as follows:

• Often we give you examples in the writeup. These are excellent test cases for you to write.

Often Autolab runs these exact tests on your code. Win!

• For each conditional in your code, write one test case that makes the conditional true and one

that makes it false.

• Test edge cases: 0 or 1 element arrays, inputs that are identical as well as completely

dissimilar to each other, numbers that are large, 0, positive and negative numbers, etc. You

shouldn't test things that violate the function's preconditions, and very large arrays make c0

unhappy, so stay away from those.

2

https://edstem.org/us/courses/40653/discussion/
https://en.wikipedia.org/wiki/Rubber_duck_debugging
ghost:autolab
ghost:testing
sec:debugging-c0:badcode
ghost:testing


Note: It is hard to test every conditional exhaustively � with 10 independent conditionals, there

are over 1000 unique con�gurations of which conditionals evaluate to true and which evaluate to

false. As a result, the second bulletpoint is more of a guide rather than a direct recommendation.

5 How do I do this task?

Obviously there is no magic bullet to help you �gure out how to do a task, but generally speaking,

one of the following ideas will help you �gure out how to do a task:

• Read the statement for the task in its entirety and underline anything that strikes you as

important

• Draw an example

• Find a pattern � break the task up into di�erent cases or separate tasks

• Walk through an example on paper and �gure out how you (as a human) are doing the task

• Search the C0 Library Reference for a function that can help

• Go back through the write-up carefully and make sure you haven't missed any hints or

comments that might help.

3

https://c0.cs.cmu.edu/docs/c0-libraries.pdf

	Intro
	My Code Doesn't Work
	Additional Things to do

	My code fails on autolab
	How do I test my code
	How do I do this task?

