
Printing in C

1 How does one print in C, and how does it di�er from C0/C1?

Recall that in C0 there were �ve functions we used in order to print things:

• print()

• println()

• printint()

• printchar()

• printbool()

Each of these functions allowed you to print a di�erent type of argument, but only that argument.
In C, all of these functions are replaced with one, much more powerful function: printf. This
function makes use of the more powerful aspects of C to allow the user to have full control over how
they wish to print.

printf's �rst argument is the string that you wish to print, optionally containing some format

speci�ers. If the string you wish to print contains format speci�ers, then during printing those
format speci�ers will be replaced by the values contained in the subsequent arguments. As an
example, the following code would print out I have 500 apples - or 1f4 in hexadecimal.

unsigned int num_apples = 500;
printf("I have %u apples - or %x in hexadecimal\n", num_apples, num_apples);

There are a couple of key ideas to see in this example. The �rst is that the arguments after
the format string replace the format speci�ers (here %u and %x) in the same order as the format
speci�ers. Thus, if we replaced the �rst num_apples in the print with 200, the code would print
out I have 200 apples - or 1f4 in hexadecimal. The second is that the format speci�er
indicates how an argument will be interpreted � the same variable can be printed as a decimal
number, a hexadecimal number, or even a character. This can be incredibly helpful when trying
to understand casting between integer types � and incredibly confusing when the format speci�er
does not match the type of the variable being printed.

Important: Due to security considerations, it is generally considered bad practice to give a variable
as the sole argument of printf � for example printf(my_string). If you wish to print out
my_string, it is considered good practice to print it using printf("%s", my_string).

The rest of this guide will deal with the speci�cs of how to create a format speci�er to print out
an argument exactly how you want, but �rst it is important to understand the general format that
one follows. Most format speci�ers are either a percent sign followed by a speci�er character (e.g.,
%d) or a percent sign followed by a length sub-speci�er followed by a speci�er character (e.g., %ld).
The general form for format speci�ers is discussed in Section Advanced Printing.

1

sec:cprint:advanced

2 The Speci�er Character

The speci�er character indicates what "kind" of thing will be printed and how the argument should
be interpreted on a basic level � whether that be as a string, an integer, a pointer or any number
of other things. Below is a summary of the most common speci�er characters.

Signed Decimal Integers. In order to print a signed decimal integer, one must use the format
character d or i. Both of these accomplish the exact same thing, but for historical reasons, d is
more common.

Some examples are provided below:

printf("%d\n", 50); // Prints 50
printf("%d\n", -213); // Prints -213
printf("%i\n", -213); // Prints -213
short x = 32767; // 32,767 is 2^15 - 1
printf("%d\n", x); // Prints 32767

Important: An argument corresponding to %d (or %i)must have type int (or smaller signed types
like short and signed char). Providing an argument of any other type is unde�ned behavior �
it may print the expected result, or it may not on any given execution.

C provides �ags to print all these other types (see below). Alternatively, one can use %d by
explicitly casting the expression to int:

unsigned int y = 4294966796;
printf("%d\n", (int)y); // Prints -500

As this example shows, what gets printed may not be what one had in mind.

Unsigned Decimal Integers. In order to print an unsigned decimal integer, one must use the
format character u. Similarly to the signed integer speci�er from before, this speci�er character
expects the argument passed to it to have type unsigned int (or a smaller unsigned type).

Some examples are provided below:

unsigned int w = 500;
printf("%u\n", w); // Prints 500
unsigned int x = -500; // -500 is implicitly cast to 4294966796
printf("%u\n", x); // Prints 4294966796
unsigned short y = 65535; // 65,535 is 2^16 - 1
printf("%d\n", y); // Prints 32767
int z = 15122;
printf("%u\n", (unsigned int)z); // Prints 15122

As the last example shows, other types need to be cast explicitly to unsigned int.

Unsigned Hexadecimal Integer. In order to print an unsigned hexadecimal integer, one must
use either the format character x or X. The only di�erence is that x represents alphabetic characters
with a lowercase letter, and X represents them with an uppercase letter. Just like with %u, if the
corresponding argument must be an unsigned int (or smaller unsigned type).

Some examples are provided below:

2

printf("%x\n", 31); // Prints 1f
printf("%X\n", 31); // Prints 1F
printf("%x\n", (unsigned int)-2); // Prints fffffffe
printf("%X\n", (unsigned int)-2); // Prints FFFFFFFE
unsigned int a = 4294967295; // 4,294,967,295 is 2^32 - 1
a++; // 0 mod 2^32
printf("%x\n", a); // Prints 0

Note: One useful property of the %x speci�er is that it exactly represents how an integer is stored
in the computer. As such it can be very helpful when debugging bitwise operations and casting
between integer types � make sure to include explicit casts to print types other than unsigned int.

Unsigned Octal Integer. In order to print an unsigned octal integer, one must use the format
character o. This format character is almost identical to the unsigned hexadecimal integer, except
it prints the number in octal (base 8).

Some examples are provided below:

printf("%o\n", 31); // Prints 37
printf("%o\n", -2); // Prints 37777777776

We don't have much use for octal in 15-122.

Character. In order to print an ASCII character, one must use the format character c. This
format character takes in a char and prints out the ASCII character that it represents. Given that
a char is an integer type, this speci�er can be used to help convert between the ASCII representation
and the integral value.

Some examples are provided below:

printf("%c\n", ’a’); // Prints a
printf("%c\n", 97); // Prints a
printf("%d\n", ’a’); // Prints 97
char* s = "I love 15-122";
printf("%c;%c\n", s[0], s[4]); // Prints I;v

String. In order to print an entire string, one must use the format character s. This format
character assumes that the input is a NUL-terminated string (e.g. a char*). If any other pointer
type is used for the argument, the resulting output is likely to be garbled and not understandable

Some examples are provided below:

printf("Hi, my name is %s\n", "Alex"); // Prints Hi, my name is Alex
char *s = "15-122";
printf("Hi, my name is %s\n", s); // Prints Hi, my name is 15-122

Pointer Address. In order to print the address of a pointer, one must use the format character
p. This can be useful when debugging (for instance to track a speci�c pointer). However, because
exact pointer addresses are not static, it is possible for the value printed to change between runs.

Some examples are provided below. The comments show what this program printed when run
� your results will likely be di�erent:

3

char *s = "15-122";
printf("%p\n", s); // Prints 0x4006a0
int *xp = malloc(sizeof(int));
printf("%p\n", (void*)xp); // Prints 0x1ba2010
int x = 5;
int *xpp = &x;
printf("%p\n", (void*)xpp); // Prints 0x7ffc406364b4
printf("%p\n", (void*)0xdeadbeef); // Prints 0xdeadbeef
printf("%p\n", NULL); // Prints (nil)
free(xp);

Note: [Other Speci�er Characters]
There are several other speci�er characters, for example to deal with �oating point numbers. As

�oating point numbers are not necessary for 15-122, we will not go over these speci�er characters.

3 Length Sub-Speci�ers

As mentioned in the previous section, all of the integer speci�er characters assume that the input
is a 32-bit integer. If you wish to print something that is not a 32-bit integer you must explicitly
provide the size of the integer through the character immediately preceding the speci�er character.
Below we provide a list of all of the length speci�ers, as well as the integer types that those length
speci�ers correspond to.

• hh: The hh length speci�er indicates that the integer to be printed has the same length as a
char. In 15-122 programming assignments, this will mean any integer that is 8 bits.

• h: The h length speci�er indicates that the integer to be printed has the same length as a
short. In 15-122 programming assignments, this will mean any integer that is 16 bits.

• (no length speci�er): When there is no length speci�er, this indicates that the integer to be
printed has the same length as an int. In 15-122 programming assignments, this will mean
any integer that is 32 bits.

• l: The l length speci�er indicates that the integer to be printed has the same length as a
long. In 15-122 programming assignments, this will mean any integer that is 64 bits.

• z: The z length speci�er indicates that the integer to be printed has the same length as a
size_t. In 15-122 programming assignments, this will mean any integer that is 64 bits.

There are several other length speci�ers out there, however they are not necessary in almost all
cases.

For convenience, here is a table converting between integer type and the format speci�er needed
to print that type.

4 Advanced Printing

The format speci�ers have a number of ways to �ne-tune the exact way that an argument is printed
out. These are not important unless you wish to write print statements that look elegant on your
screen.

4

Type Format Speci�er

char %hhd

unsigned char %hhu

short %hd

unsigned short %hu

int %d

unsigned int %u

long %ld

unsigned long %lu

size_t %zu

To understand these parameters, one must �rst explore the most general layout for a format spec-
i�er. All format speci�ers take the form of %[flags][width][.precision][length]specifier.
In other words, all format speci�ers start with a percent sign, optionally followed by one or more
�ags, optionally followed by the width, optionally followed by a period and then the precision,
optionally followed by a length, and �nally followed by speci�er character.

4.1 Flags

The �rst optional parameter in the format speci�er is the �ags. When present, each �ag modi�es
the output. The �ags can be combined arbitrarily, however if two �ags contradict each other, then
only one of those �ags will be considered. The rest of this section explores the possible �ags

-. When the - �ag is present in conjunction with the width �eld (See Section Width below), the
resulting printed value will be left-justi�ed within the width rather than being right-justi�ed.

Some illustrative examples:

printf("<%5d>\n", 10); // Prints < 10>
printf("<%-5d>\n", 10); // Prints <10 >
printf("<%6s>\n", "hello"); // Prints < hello>
printf("<%-6s>\n", "hello"); // Prints <hello >

+. When the + �ag is present, positive numbers will be prepended with the + sign. If the speci�er
character is for something other than a number (like a string), this �ag is nonsensical and will result
in a compiler error.

Some illustrative examples:

printf("<%d>\n", 10); // Prints <10>
printf("<%d>\n", -10); // Prints <-10>
printf("<%+d>\n", 10); // Prints <+10>
printf("<%+d>\n", -10); // Prints <-10>

[SPACE]. When the [SPACE] �ag is present, positive numbers will be prepended with a space. If
the speci�er character is for something other than a number (like a string), this �ag is nonsensical
and will result in a compiler error.

Some illustrative examples:

5

sec:cprint:flags
sec:cprint:width
sec:cprint:prec
sec:cprint:length
sec:cprint:spec
sec:cprint:width

printf("<%d>\n", 10); // Prints <10>
printf("<%d>\n", -10); // Prints <-10>
printf("<% d>\n", 10); // Prints < 10>
printf("<% d>\n", -10); // Prints <-10>
//printf("<% s>\n", "hi"); // Compilation error!

#. When the # �ag is present and the speci�er character is x, X or o, the printed number will be
prepended with 0x, 0X or 0; respectively. When the # �ag is present and the speci�er character is
anything else, this �ag is nonsensical and is ignored.

Some illustrative examples:

unsigned int x = 10;
printf("<%x>\n", x); // Prints <a>
printf("<%X>\n", x); // Prints <A>
printf("<%o>\n", x); // Prints <12>
printf("<%d>\n", x); // Prints <10>
printf("<%#x>\n", x); // Prints <0xa>
printf("<%#X>\n", x); // Prints <0XA>
printf("<%#o>\n", x); // Prints <012>
//printf("<%#d>\n", 10); // Compilation error!

0. When the 0 �ag is present in conjunction with the width �eld (See Section Width below), the
resulting printed value will be padded with 0's if necessary rather than spaces. Note that this �ag
only works when the speci�er character indicates a number is to be printed out.

Some illustrative examples:

printf("<%5d>\n", 10); // Prints < 10>
printf("<%05d>\n", 10); // Prints <00010>

4.2 Width

The width speci�er is simply a number which indicates the minimum number of characters to be
printed. By default, if the output needs to be padded, it will be left-aligned and padded with spaces.
It is also possible to replace the number with the * character, which indicates that the number is
an additional argument rather than baked into the string

Some illustrative examples:

printf("<%5d>\n", 10); // Prints < 10>
printf("<%*d>\n", 5, 10); // Prints < 10>
printf("<%8s>\n", "hello"); // Prints < hello>
printf("<%*s>\n", 8, "hello"); // Prints < hello>

4.3 Precision

The precision speci�er is a period (.) followed by the precision needed. Exactly what the precision
means depends on the speci�er character. For integer speci�ers (e.g. d, x, o, u, x and X) the precision
is similar to the width speci�er, but always pads with leading zeros. For the string speci�er (e.g. s),

6

sec:cprint:width

the precision indicates the maximum number of characters to print. For the character and pointer
address speci�ers (c and p), the precision speci�er is meaningless and results in a compiler error.

Much like the width speci�er, it is also possible to replace the number with the * character,
which indicates that the number is an additional argument rather than baked into the string

Some illustrative examples:

printf("<%.5d>\n", 10); // Prints <00010>
printf("<%.*d>\n", 5, 10); // Prints <00010>
printf("<%.5s>\n", "hello friends"); // Prints <hello>
printf("<%.*s>\n", 5, "hello friends"); // Prints <hello>

Generally speaking the precision speci�er is used for �oating point numbers, which are not
necessary in 15-122. See the note on Other Speci�er Characters.

7

note:cprint:float

	How does one print in C, and how does it differ from C0/C1?
	The Specifier Character
	Length Sub-Specifiers
	Advanced Printing
	Flags
	Width
	Precision

